SIEMENS

PolyCool[™] Superheat

CPS 40

Installations- und Bedienungsanleitung Installation and User Manual Manuel d'installation et d'utilisation Manuale d'installazione e d'utilizzazione Manual de instalación y servicio

Ausgabe 1.0 CE1U3372XX H 74 319 0555 0 a 22.09.2006

Building Technologies HVAC Products

de Inhaltsverzeichnis	3
en Contents	27
fr Sommaire	51
it Contenuto	75
es Índice	99

de Inhaltsverzeichnis

1	Einführung4
2	Funktionsbeschreibung4
3	Systemkomponenten4
3.1	Montage und Installation5
3.2	Anschluss der Peripheriegeräte7
4	Regler8
4.1	Bedienung8
4.2	Betriebsmodi8
5	Inbetriebnahme9
5.1	Kurz Inbetriebnahme9
5.1.1	Überprüfen des Displays9
5.2	Überprüfen der Installation9
5.3	Konfiguration des Reglers9
5.4	Überprüfen der Peripheriegeräte14
5.5	Regelbetrieb16
5.6	Einstellen des Überhitzungsreglers17
6	Regulierung der Kühlleistung19
6.1	Allgemeines19
6.2	Funktionsprinzip19
6.3	Anwendungen20
6.3.1	Externe Leistungsregulierung (EXT.)20
6.3.2	Interne Leistungsregulierung (INT.)21
6.4	Inbetriebnahme und optimieren des
	Leistungsreglers22
7	Fehlerbehebung23
8	Kurzübersicht der Bilder auf dem Display24

1 Einführung

Diese Anleitung enthält alle erforderlichen Angaben für Installation, Bedienung und Inbetriebnahme von PolyCool™ Überhitzung. Alle erforderlichen Einstellungen können ohne Hilfsmittel direkt am Gerät vorgenommen werden.

2 Funktionsbeschreibung

PolyCool™ Überhitzung ermöglicht eine optimale Füllung des Verdampfers durch folgende Funktionen:

- Regulierung der Überhitzung
- Überwachung der minimalen Überhitzung
- MOP-Funktion (Maximum Operating Pressure)
- Überwachung von Temperatur- und Druckfühler
 - ⇒ Alarmkontakt: Ein durch die Fühlerüberwachungsfunktion gesteuerter Alarmkontakt kann je nach Beschaltung zur Betätigung eines Alarmhorns genutzt oder in die Sicherheitskette des Verdichters integriert werden.
- Servicefunktion (manuelles öffnen des Ventils) Optional kann eine Regulierung der Kühlleistung konfiguriert werden (vgl. Kapitel 6).

3 Systemkomponenten

PolyCool™ Überhitzung umfasst folgende Komponenten:

- Regler: RWR462.10
- Elektronisches Einspritzventil: MVL661...-...
- Druckfühler: QBE9101-P10U, 4...20 mA Ausgangssignal
- Temperaturfühler: QAZ21.682/101, -50...80 °C / -58...176 °F

Die erwähnten Geräte benötigen eine Speisespannung von AC / DC 24 V.

Für AC 24 V empfehlen wir einen Trenntransformator mit mindestens 25 VA.

3.1 Montage und Installation

Regler

A Montage auf DIN-Schiene

Es werden keine zusätzlichen Teile benötigt.

B Wandmontage

Mit 4 Ellipsenschrauben für Geräte-Lochmasse 4 mm x 6 mm

C Frontmontage

Mit dem HVAC Products Montageset ARG462.10 / Montageanleitung M3351.1

Elektronisches Einspritzventil (EIV)

Labormessungen ergaben, dass eine Ventilmontage oberhalb des Verdampfers (min. 5 cm) eine bessere Regelleistung zur Folge haben!

Dies ist besonders wichtig bei Plattenwärmetauschern.

- Vor dem Einlöten in die Rohrleitung ist die Durchflussrichtung zu überprüfen
- Wichtig sind auch saubere Rohrleitungen. Im Speziellen müssen Lötmaterial, Kupferspäne, Schmutz etc. entfernt werden
- Ventilgehäuse während den Lötarbeiten mit nassem Tuch abkühlen!
- Vor dem Ventil einen Filter montieren
- Leitungsrohre so befestigen, dass die Anschlusstutzen des Ventils nicht belastet werden. Vibrationen können zu Rohrbruch führen!
- Verdampfungstemperatur unter 0 °C: ganzes Ventil (inkl. Oberteil/Signalumformer) und wegführende Leitung isolieren
 - Verdampfungstemperatur über 0 °C: Ventilarmatur und wegführende Leitungen isolieren (siehe Bild). Auf keinen Fall Oberteil und Elektronik isolieren (Überhitzung)!

Druckfühler

- Druckfühler aufrecht oben auf der Leitung montieren
- Kann direkt auf Saugleitung montiert werden

Temperaturfühler

- Möglichst nahe beim Verdampferaustritt montieren (max. Distanz 2 m / 6.5 ft). Auf ein gerades Rohrstück, unmittelbar nach einem Bogen oder an dessen Aussenseite
- mit Kabelbinder befestigen
- Isolieren

Hinweis

Je weiter der Fühler vom Verdampfer montiert wird, desto stabiler ist die Regulierung (max. 2 m). Dazu empfiehlt es sich, den Sollwert der Überhitzung im gleichen Masse zu erhöhen.

3.2 Anschluss der Peripheriegeräte

Die Peripheriegeräte müssen gemäss nachfolgendem Schaltplan angeschlossen werden.

Geräte		Klemmenbelegung		
X1	Druckfühler QBE9101-P10U	X1, 24 VDC	Verdampfungsdruck	
X2	Temperaturfühler QAZ21.682/101	X2, GND	Sauggastemperatur	
X4	Nur mit der Konfiguration	X3	Stellungsrückmeldung EIV	
	Leistungsregulierung:	X4, GND	Bei Konfiguration Leistungsregulierung:	
	- Temperaturfühler aktiv		- Externes Signal DC 010 V / 420 mA	
	- Signalgeber DC 010 V/420 mA *		- Mediumstemperatur (aktiver Sensor)	
X5	Temperaturfühler QAZ21.682/101	X5, GND	Bei Konfiguration interne Leistungs-	
	(nur erforderlich mit interner		regulierung:	
	Leistungsregulierung)		- Mediumstemperatur (passiver Sensor)	
K1	Freigabe	D1, M	Freigabe	
M1	Kompressor	Q13, Q14	Kompressor	
N1	Regler RWR462.10	G, G0	Speisung AC / DC 24 V	
Y1	EI. Einspritzventil (EIV) MVL661	Y1	Stellsignal EIV (DC 010 V)	

* Nutzbarer Bereich: -0.5...10.5 V / 3.5...20.5 mA. Ausserhalb dieses Bereiches geht der Regler auf Störung.

4 Regler

4.1 Bedienung

Die Bedienung erfolgt über die auf der Gerätefront angebrachten Bedienelemente.

- Mit der Bedientaste <OK> werden die Einstellungen zum Ändern freigegeben oder zur Übernahme bestätigt.
- Mit den Bedientasten +/- werden die blinkenden Daten verändert.
- Mit der Bedientaste <ESC> geht es eine Ebene zurück zur vorhergehenden Ebene.

Blinkende Anzeige bedeutet: Daten sind verstellbar.

4.2 Betriebsmodi

Die Funktionen des Reglers sind in vier Betriebsmodi aufgeteilt: Parametermodus, Simulationsmodus, Konfigurierungsmodus, Regelmodus. Ein bestimmter Betriebsmodus wird aktiviert, indem man die +/- Tasten gleichzeitig und während wenigstens fünf Sekunden gedrückt hält. Tasten loslassen wenn C1 blinkt.

Über die untenstehenden Abläufe erfolgt der Zugang zu den gewünschten Betriebsmodi.

Betriebsmodus	Ablauf	
	Wenn C1 blinkt, <ok> drücken zur</ok>	
	Bestätigung	
Konfigurierungsmodus	Mit +/- wird der Modus gewählt und mit	
Parametermodus	<ok> bestätigt.</ok>	
	Oder, mit Drücken der <esc> Taste den</esc>	
Simulationsmodus	aktuellen Modus verlassen	

Sind alle nötigen Parameter eingegeben, zeigt der Regler standardmässig den Regelmodus an mit dem Sollwert Überhitzung, dem Istwert Überhitzung und dem Istwert Öffnungsgrad des Ventils

5 Inbetriebnahme

5.1 Kurz Inbetriebnahme

PolyCool Überhitzungsregler ist "Plug & Play", einzig das Kältemittel muss gewählt werden.

Ablauf	Beschreibung
Schritt 1	Alle Systemkomponenten sind verdrahtet
Schritt 2	Regler unter Spannung setzen
Schritt 3	Kältemittel auswählen

5.1.1 Überprüfen des Displays

Nach dem Aufstarten erscheint der Anzeigesegmenttest auf dem Display (Bild 1).

Unter Bildern ist die ganze Anzeige des Displays zu verstehen, durchnummeriert in der Ablaufreihenfolge. Siehe auch Kapitel 8 «Kurzübersicht der Bilder auf dem Display».

Überprüfen der Installation 5.2

Bevor die Spannung eingeschaltet wird, muss überprüft werden, ob die Systemkomponenten richtig installiert und verdrahtet wurden. Siehe auch Abschnitt 3.1 und 3.2

5.3 Konfiguration des Reglers

Wird der Regler zum ersten Mal unter Spannung gesetzt, springt er automatisch in den Konfigurationsmodus. Wurde bereits ein Kältemittel spezifiziert, wird nach dem Einschalten direkt der Regelmodus aktiv. Beim zweiten Start und nachfolgenden Starts lässt sich mittels gleichzeitigem Drücken der +/- Taste für 5 Sekunden der Konfigurationsmodus einstellen.

Hinweis Werden bei einem in Betrieb stehenden Realer Einstellungen im Konfigurationsmodus geändert (gilt nicht für die Einheiten), schaltet der Reglerausgang Y1 auf 0 V. Die Regulierung wird erst dann wieder freigegeben, wenn alle nachfolgenden Parameter mit der <ESC> Taste freigegeben werden (der Regler muss in den Regelmodus gebracht werden).

Konfigurierungsmodus CONF

(Bild 3 / weiter mit <OK>)

In diesem Modus muss das in der Anlage verwendete Kältemittel eingegeben werden. Zusätzlich können die Einheiten für Druck und Temperatur spezifiziert werden. Es ist auch möglich, die Sensortypen entsprechend der Applikation zu konfigurieren.

Bei Eingabe des falschen Kältemittels kann die Anlage beschädigt werden.

Optional kann eine Regulierung der Kühlleistung konfiguriert werden (vgl. Kapitel 6). Ab Werk ist die Leistungsregulierung nicht aktiv.

Bild	Funktion	Parameter	Code	Einstellbarer Bereich/Schrittweite	Einstellungen ab Werk	Vorgehen
4	REFRIG	Kältemitteltyp	REFRIG	R22, R23, R134a,	keine	Einstellen
	1)			R152a, R170, R290,		mit +/-
				R401a, R401b, R401c,		
				R402a, R402b, R404a,		Bestätigen
				R406a, R407a, R407b,		mit <ok></ok>
				R407c, R408a, R409a,		
				R410a, R410b, R417a,		Verlassen
				R502, R507, R600,		mit <esc></esc>
				R600a, R717, R723,		
				R744, R1270		
5	ENABLE	Enable/	COMP	ON (für C1)	ON	
	2)	Disable Kom-				
		pressor und				
		Stellungsrück-	Fb ³⁾	ON/OFF	OFF	
		meldung EIV				
6	CAP ⁴⁾	Anwendung	-	NO = einfache	NO	
				Überhitzung		
				(Anwendung 1)		
				EXT = Externe		
				Leistungsregulierung		
				(Anwendung 2)		
				INT = Interne		
				Leistungsregulierung		
				(Anwendung 3)		

Bild	Funktion	Parameter	Code	Einstellbarer Bereich/Schrittweite	Einstellungen ab Werk	Vorgehen
7	SENSOR	Fühler 1	X1	QBE9101-P10U,	-	
				420 mA		
		Fühler 2	X2	Ni1000	Ni1000	
		Fühler 3	Х3	010 V, 420 mA	010 V	
		Fühler 4 ⁵⁾	X4	Für Konfiguration int. Leistungsregulierung: NO, 010 V, 420 mA Für Konfiguration ext. Leistungsregulierung 010 V, 420 mA	-	
		Fühler 5 ⁵⁾	X5	Ni1000	Ni1000	
8	RANGE	X4	LO HI	-9090 °C / 0.1 °C -130194 °F / 0.1 °F -9090 °C / 0.1 °C -130194 °F / 0.1 °F	-35.0 °C -31.0 °F +35.0 °C +95.0 °F	
9	UNITS	Temperatur	т	°C(K), °F	°C(K)	
		Druck	Р	Bar, Psi	Bar	
		EIV Öffnung	EIV	V, %	%	

- 1) R290 und R1270 nur mit explosionsgeschützten Ventilen verwendbar. R717 benötigt Ammoniak-taugliche Ventile.
- 2) Kreis 1 ist das Standardsystem und der Kompressor von Kreis 1 kann nicht auf "disable" gesetzt werden.
- 3) Wenn die Abweichung vom EIV Stellungsrückmeldungssignal (X3) zum EIV Stellsignal (Y1) über 10 % ist, beginnt "EIV" zu blinken.
- 4) Im Regelmodus erscheint CAP auf dem Display nur wenn die Leistungsregulierung aktiviert ist.
- 5) X4 und X5 sind abhängig von der gewählten Konfiguration. Wird für X4 NO gewählt, ist X5 der gesetzte Fühler.
- 6) "Range" Grenzen können nur konfiguriert werden falls interne Leistungsregulierung (Applikation 3) und X4 ausgewählt sind.

Parametermodus PARA

(Bild 10 / weiter mit <OK>)

In diesem Modus können Sollwert und Regelparameter der Überhitzungsregulierung, der MOP-Funktion und, falls konfiguriert, der Leistungsregulierung und der SAFETY-Funktion eingegeben werden. Die Regulierung der Überhitzung erfolgt mit einem PID-Regler. Die MOP-Funktion und die Leistungsregulierung verwenden einen PI-Algorithmus.

Bild	Funktion	Parameter	Code	Einstellbarer Bereich/Schrittweite	Einstellungen ab Werk	Vorgehen
11	ΔT	Sollwert	SP	016 K / 0.1 K	6.0 K	Einstellen
				028.8 °F / 0.1 °F	10.8 °F	mit +/-
		P-Band	XP	2160 K / 1 K	10 K	Bestätigen
				3288 °F / 1 °F	18 °F	mit <ok></ok>
		Nachstellzeit	TN	0600 s / 1 s	30 s	Zurück
		D-Anteil	D	05 / 1	0	zum
12	CAP ¹⁾	Max.Ver-	SMX	050 K / 0.1 K	18.0 K	Regel-
		grösserung	Siehe Beispiel Seite 19	090 °F / 0.1 °F	32.4 °F	betrieb mit
		von ∆T SP				<esc></esc>
		Wirksinn	SD ²⁾	-1 (0 V / 4 mA = max.	1	
				Kühlleistung)		
				1 (0 V / 4 mA = min.		
				Kühlleistung)		
		Sollwert	SP	-4590 °C / 0.1 °C	6.0 °C	
				-49194 °F / 0.1 °F	42.8 °F	
		P-Band	XP	2160 K / 1 K	35 K	
				3288 °F / 1 °F	63 °F	
		Nachstellzeit	TN	0600 s / 1 s	95 s	
13	MOP	Sollwert	SP	-4535 °C / 0.1 °C	15.0 °C	
				-4995 °F / 0.1 °F	59.0 °F	
		P-Band	XP	2160 K / 1 K	5 K	
				3288 °F / 1 °F	9 °F	
		Nachstellzeit	TN	0600 s / 1 s	30 s	

14	SAFETY 3)	Ventilöffnungs- verzögerung	VD	030 s / 1 s	0 s	
		Ventilöffnungs- begrenzung	VO	050 % / 1 %	0 %	
		Drucksensor Alarm- verzögerung	PA	030 s / 1 s	5 s	
		Untere Grenze für Tempera- turfühler	TL ⁴⁾	-5040 °C / 1 °C -5840 °F / 1 °F	-40 °C / 1 °C -40 °F / 1 °F	
		Minimale Überhitzung	MI	04 K / 07.2 °F	2 K / 3.6 °F	

Kann nur parametriert werden, falls im Konfigurationsmodus die externe oder interne Leistungsregulierung ausgewählt wurde

- ²⁾ SD kann nur parametriert werden, falls im Konfigurationsmodus die externe oder interne Leistungsregulierung ausgewählt wurde SD = -1 bedeutet, 0 V / 4 mA entspricht max. Kühlleistung SD = 1 bedeutet, 0 V / 4 mA entspricht min. Kühlleistung
- ³⁾ Sicherheitsanfahrbetrieb

⁴⁾ Sobald der Temperatur-Istwert über die TL-Grenze geht, erscheint ein Alarm.

BemerkungDie MOP-Funktion lässt sich auch parametrieren. Die ab
Werk eingestellten Erfahrungswerte sollten aber nur in
Ausnahmefällen verändert werden.

5.4 Überprüfen der Peripheriegeräte

Die Peripheriegeräte können wie folgt getestet werden:

Temperatur- und Druckfühler

Die beiden Fühler sind in Ordnung, wenn im Regelmodus die angezeigten Messwerte für die Verdampfungs-Temperatur T0 und die Sauggas-Temperatur TOH realistisch sind (Referenzmessungen). Wenn die interne Leistungsregulierung konfiguriert ist, muss auch der Fühler für die Mediumstemperatur überprüft werden. Mögliche Fehler werden in Kapitel 7 behandelt.

Elektronisches Einspritzventil

Im Simulationsmodus kann ein Öffnungsgrad (MAN) für das elektronische Einspritzventil vorgegeben werden. Im selben Betriebsmodus kann überprüft werden, ob die Ist-Position des Ventils (EIV X) mit der manuell vorgegebenen Position (EIV Y) übereinstimmt.

Hinweis Man beachte, dass eine kleine Differenz zwischen Stellsignal und Stellungsrückmeldung normal ist. Die Differenzgrösse sollte aber über den ganzen Stellvorgang in etwa gleich bleiben.

Simulationsmodus SIMU

(Bild 15 / weiter mit <OK>)

C1	то •	-18	8.8	C°FK V		SIMU OK
	тон		n r	°C°FK		
	EIV	<u>-i8</u>	<u>0.0</u>	J %v	MAN EIV	

Bild	Funktion	Parameter	Code	Einstellbarer	Einstellungen		Vorgehen		
				Bereich	ab Werk	aktuell			
16	Manueller	Sollwert *	MAN	010 V / 0.1 V	0.0 V		Einstellen		
	Öffnungs-	0…10 V Signal	EIV				mit +/-		
	grad EIV						Bestätigen		
17	Istwert	0…10 V Signal	MAN	-	-		mit <ok></ok>		
	Ventil-	0100 %	EIV				Zurück zum		
	position EIV	Öffnung	EIV				Regelbetrieb		
18	Istwert-	Verdampfungs-	то		-		mit <esc></esc>		
	Anzeige	temperatur							
		Sauggas-	тон		-				
		temperatur							
		Zum Verlassen fortlaufend <esc> drücken</esc>							

* Achtung auf eigene Gefahr!

- Die Überwachungsfunktionen sind im Simulationsmodus ohne Freigabe über D1 nicht aktiv. Eine Beschädigung der Anlage ist somit möglich.
- Im Simulationsmodus können die Überwachungsfunktionen bewusst deaktiviert werden (über D1). Diese Eigenschaft ermöglicht einen Notbetrieb der Anlage für ca. 15 Minuten.

5.5 Regelbetrieb

Im Regelbetrieb ist der Regelmodus aktiv. In diesem Betriebsmodus werden alle Ein- und Ausgangsgrössen angezeigt.

Regelmodus

Bild	Parameter & Code	Position	Vorgehen
19	Istwert Überhitzung	Linie 1	Einstellen
	Sollwert Überhitzung (∆T SP)	Linie 2	mit +/- um
	Öffnungsgrad EIV (EIV)	Linie 3	zum ge-
19a ¹⁾	Fb (EIV Rückstellungssignal)	Linie 1	wünsch-
	Reglerausgangssignal EIV	Linie 2	ten Bild
	Istwert Öffnungsgrad EIV	Linie 3	zu
20	(Leer)	Linie 1	gelangen
	Verdampfungs-Temperatur (TO)	Linie 2	
	Verdampfungs-Druck (PO)	Linie 3	
21	(Leer)	Linie 1	
	Verdampfungs-Temperatur (TO)	Linie 2	
	Sauggas-Temperatur (TOH)	Linie 3	
21a ²⁾	EXT (Signal extern)	Linie 1	
	Istwert Signal extern	Linie 2	
	(Leer)	Linie 3	
21b ³⁾	Istwert Medium-Temperatur (TM)	Linie 1	
	Sollwert-Medium-Temperatur (CAP SP)	Linie 2	
	(Leer)	Linie 3	
22	Kältemitteltyp (R)	Linie 1	
	(Leer)	Linie 2	
	(Leer)	Linie 3	

¹⁾ Falls Rückstellungssignal (Fb) inaktiv, erscheint Bild 19a nicht

²⁾ Falls externe Leistungsregulierung aktiv, erscheint Bild 21a

³⁾ Falls interne Leistungsregulierung aktiv, erscheint Bild 21b

5.6 Einstellen des Überhitzungsreglers

Wenn die Verdrahtung des Systems und alle Peripheriegeräte in Ordnung sind, kann die Anlage eingeschaltet werden. Die ab Werk eingestellten Parameter für die Überhitzungsregulierung (XP,TN und D) können noch wie folgt optimiert werden:

- a) Nach dem Einschalten abwarten, bis sich die Anlage eingeschwungen hat. Dieser Zustand ist nach 2 bis 5 Minuten erreicht. Das obige Bild zeigt einen möglichen Verlauf der Überhitzung während des Einschwingens.
- b) Maximale Abweichung (MA) zum eingestellten Sollwert <u>A</u>T SP bestimmen. Verwenden Sie dazu die Anzeige der <u>Überhitzung im Regelmodus.</u>
- c) XP vergrössern (z.B. verdoppeln) oder verkleinern (z.B. halbieren).
- Nach der Änderung von XP mindestens zwei Periodendauern abwarten und erneut MA der Schwingung bestimmen. Die Änderung von MA legt das weitere Vorgehen fest. Beachten Sie dazu nachfolgende Tabelle.
- e) Ist der optimale Wert für XP gefunden, dann muss dieser im Weiteren nicht mehr verändert werden.
- f) Die Schritte c) bis e) mit TN anstelle von XP wiederholen.
- g) Die Schritte c) bis e) mit D anstelle von XP wiederholen.

	MA wurde kleiner	MA wurde grösser
XP wurde vergrössert	XP nochmals vergrössern und weiter nach Schritt d), bis MA beginnt grösser zu werden. Dann XP auf den Wert zurücksetzen, bei dem MA am kleinsten war (optimaler Wert).	XP auf den ursprünglichen Wert zurücksetzen und dann verkleinern. Weiter mit Schritt d).
XP wurde verkleinert	XP nochmals verkleinern und weiter nach Schritt d), bis MA beginnt grösser zu werden. Dann XP auf den Wert zurücksetzen, bei dem MA am kleinsten war (optimaler Wert).	XP auf den ursprünglichen Wert zurücksetzen und dann vergrössern. Weiter mit Schritt d).

Regulierung der 6 Kühlleistung

Allgemeines 6.1

Mit zunehmender Überhitzung des Sauggases nimmt die Kühlleistung einer Kältemaschine ab. Dieser Effekt kann mit PolvCool™ Überhitzung genutzt und zur Regulierung der Kühlleistung verwendet werden.

6.2 Funktionsprinzip

Der Sollwert für die Überhitzungsregulierung wird vom Leistungsregler in einem bestimmten Bereich stetig varijert. Die Zuordnung erfolgt proportional zu einem 0...10 V Signal resp. zur Stellgrösse des Leistungsreglers. 0 V entspricht dem Sollwert für die Überhitzungsregulierung AT SP. 10 V entspricht der Summe (ΔT SP+SMX). Beide Parameter können im Parametermodus eingegeben werden. Je grösser SMX umso stärker kann die Kühlleistung reduziert werden. Mit abnehmender Leistung sinkt aber der Verdampfungsdruck und somit die Verdampfungs-Temperatur. Durchschnittlich sinkt pro 1 K mehr Überhitzung:

SMX	 die Verdampfungstemperatur um 1 °C 		
	 die K ühlleistung Q um 3.1 %. 		
Beispiel	Gewünscht wird eine Reduktion der Kühlleistung um 50 %,		
	d.h. 50 % / 3.1 ≅ 16 K für SMX		
	Damit Schmierung und Kühlung des Verdichters jederzeit		
	gewährleistet ist, darf die Überhitzung nicht beliebig ver-		
	arrige out worden. Der minimel zuläggige Coundruck ist dem		

grössert werden. Der minimal zulässige Saugdruck ist dem Datenblatt des Verdichters zu entnehmen.

Wenn die Kühlleistung zu stark gedrosselt wird, kann am Verdampfer vermehrt Eisbildung auftreten. Dies gilt vor allem für direktverdampfende Luftkühler und muss auch beachtet werden im Kaltwassersatz ohne Frostschutz.

6.3 Anwendungen

Die Funktion von **PolyCool™ Überhitzung** kann in drei Anwendungen aufgeteilt werden (Konfigurierungsmodus). Anwendung 1 ist die reine Überhitzungsregulierung (Default). Sie ist in den vorherigen Kapiteln beschrieben. Die beiden anderen Anwendungen sind:

6.3.1 Externe Leistungsregulierung (EXT.)

Über den Eingang X4 kann innerhalb der im Parametermode (SMX) spezifizierten Grenzen, mittels eines DC 0...10 V / 4...20 mA Signales, der Sollwert für die Überhitzung direkt verändert werden. Das Signal stammt im Allgemeinen von einem externen Regler (z.B. Synco, Saphir etc.), dessen Aufgabe es ist, die Mediumstemperatur TM konstant zu halten. Er misst die Mediumstemperatur TM, berechnet die Stellgrösse und wandelt sie in ein DC 0...10 V / 4...20 mA Signal um.

Wirkungsweise

10 V / 20 mA ≅ min. Q₀ 0 V / 4 mA ≅ max. Q₀ (100 %) Falls SD = 1 (siehe Seite 12, Bild 12)

6.3.2 Interne Leistungsregulierung (INT.)

Über den Eingang X4 kann mittels eines aktiven (DC 0...10 V / 4...20 mA Ausgang) oder passiven (Ni1000) Temperaturfühlers X5 die Mediumstemperatur TM direkt erfasst werden. Der Eingang ist im Konfigurierungsmodus entsprechend konfigurierbar (Bilder 6 und 7). Der Istwert der Mediumstemperatur wird mit dem Sollwert CAP SP verglichen und der Regler für die Mediumstemperatur (Leistungsregler) passt den Sollwert für die Überhitzung entsprechend an. Der Sollwert für die Mediumstemperatur und die Reglerparameter können im Parametermodus eingegeben werden.

6.4 Inbetriebnahme und optimieren des Leistungsreglers

Die Inbetriebnahme erfolgt gemäss Kapitel 5. Wenn möglich sollte die Inbetriebnahme nur mit der reinen Überhitzungsregulierung durchgeführt werden.

Nach dem Optimieren der Reglerparameter nach Kapitel 5.5, wird in einem zweiten Schritt die Leistungsregulierung konfiguriert und parametriert.

Die Parameter (XP, TN) des Leistungsreglers sind prinzipiell nach Kapitel 5.5 zu optimieren. Sie sind immer deutlich grösser als die Parameter des Überhitzungsreglers zu wählen.

7 Fehlerbehebung

Komponente	Störung	Mögliche Ursache / Lösung
Passiver	Messwert blinkt, Anzeige: FAIL	Fühlerkabel Unterbruch / nicht
Fühler Ni1000	Messwert blinkt Anzeige: FRR / LO	Messwert < TI
	Messwert blinkt, Anzeige: ERR / HI	Messwert > 80 °C
Aktive Temperatur- fühler und andere DC 010 V /	Messwert blinkt, Anzeige: ERR / LO	Messwert ≤ -0.5 V oder 3.5 mA (mit externer Leistungregulierung) Messwert ≤ 0 V oder 4 mA (mit interner Leistungsregulierung mit Aktiv Temperatur Fühler)
420 mA externe Signal- geber (Synco, Saphir etc.)	Messwert blinkt, Anzeige: ERR / HI	Messwert ≥ 10.5 V oder 20.5 mA (mit externer Leistungregulierung) Messwert ≥ 10 V or 20 mA (mit interner Leistungsregulierung mit Aktiv Temperatur Fühler)
Druckfühler	Messwert blinkt, Anzeige: ERR / LO	Messwert ≤ 4 mA
	Messwert blinkt, Anzeige: ERR / HI	Messwer \ge 20 mA
Elektronisches Einspritzventil	Stellungsrückückmeldung = 0 V	Anschlusskabel für Rückmeldung unterbrochen / nicht angeschlossen
(EIV)	Ventil öffnet nicht	Anschlusskabel nicht angeschlossen Im Simulationsmodus kann das EIV
		überprüft werden, indem der Öffnungsgrad manuell eingegeben und mit der Stellungsrückmeldung verglichen wird.
		Ventil defekt
	Stellungsrückmeldung stimmt nicht mit manuell eingegebenem Öffnungsgrad überrein	Kabel für Rückmeldung nicht angeschlossen (Anschlussklemmen siehe Datenblatt) Unterbruch oder Ventil defekt.
	Vereisen des Verdampfers bei geschlossenem Ventil	Ventil defekt / Ventil elektronisch nicht korrekt kalibriert. Ventil schliesst nicht ganz, möglicher Schmutz im Ventil
Controller	Keine Anzeige im LC-Display	Speisespannung überprüfen (AC / DC 24 V)
	Stellgrösse immer 0 V (Y1)	Kurzschluss / Unterbruch der Fühler Keine Freigabe über D1 * Regler defekt
	Vereisen des Verdampfers ohne Freigabe über D1	Reglerausgang Y1 ist nicht 0 V => Regler defekt
		Externe Störspannung auf der Signalleitung zum EIV

* Bei Fehlen des Freigabesignals D1, blinkt gleichzeitig das Kompressor 🖓 Piktorgramm.

8 Kurzübersicht der Bilder auf dem Display

Die Werte der einzelnen Einstellgrössen und deren Schrittbreite kann man aus Kapitel 5 entnehmen.

Bild	Display	Vorgehen	
1	Anzeigesegmenttest für ca. 5 s		
2	Auswahl des Kreises	Gleichzeitig +/- für mindestens 5 s drücken. Einstellen mit +/- und bestätigen mit <ok></ok>	
	Nach Auswahl des Kreises, die folgenden Modi mit bestätigen.	: +/- auswählen und mit <ok></ok>	
3	CONF MODE (Konfigurationsmodus)	Mit <ok> bestätigen und weiterfahren</ok>	
4	REFRIG (Kältemittelauswahl)		
5	ENABLE (Enable/disable Kompressor und Stellungsrückmeldung EIV)	In Bild 3, einstellen mit +/-	
6	CAP	Weiterfahren/bestätigen mit <ok></ok>	
7	SENSOR	Verlassen mit <esc></esc>	
8	RANGE (Messbereich von X4)		
9	UNITS Fortlaufand zESCs drücken und zurück zu Bild 2		
10	Pollaulena <esc> drucken und zuruck zu Blid 5</esc>	Mit CK> bootätigon und	
10	FARA MODE (Farametermodus)	weiterfahren	
11	ΔT	Mit <ok> bestätigen und</ok>	
		weiterfahren	
	ΔT SP (Sollwert Überhitzung) (6.0 K / 10.8 °F Default)		
	ΔT XP (P-Band Uberhitzung) (10 K / 18 °E Default)	In Bild 11, einstellen mit +/-	
	ΔT TN (Nachstellzeit Überhitzung) (30 s Default)	Weiterfahren/bestätigen mit <ok> Verlassen mit <esc></esc></ok>	
	ΔT D (D-Anteil Überhitzung) (0 Default)		
	Fortlaufend <esc> drücken und zurück zu Bild 10</esc>		
12	САР	Mit <ok> bestätigen und weiterfahren</ok>	
	CAP SMX (max. Sollwertvergrösserung) (18.0 K / 32.4 °F Default)		
	CAP SD (externe Signalrichtung) (SD = 1 bedeutet, 0 V / 4 mA entspricht min. Kühlleistung)	In Bild 12, einstellen mit +/-	
	CAP SP (Sollwert Leistungsregulierung) (6.0 °C / 42.8 °F Default)	Weiterfahren/bestätigen mit <ok> Verlassen mit <esc></esc></ok>	
	CAP XP (P-Band) (35 K / 63 °F Default)		
	CAP TN (Nachstellzeit) (5 s Default)		
	Fortlautend <esc> drücken und zurück zu Bild 12</esc>		

Bild	Display	Vorgehen	
13	МОР	Mit <ok> bestätigen und weiterfahren</ok>	
	MOP SP (Sollwert MOP) (15 °C / 59 °F Default) MOP XP (P-Band of MOP) (5 K / 0 °E Default)	In Bild 13, einstellen mit +/- Weiterfahren/bestätigen mit	
	MOP TN (Nachstellzeit MOP) (30 s Default)	Verlassen mit <esc></esc>	
	Fortlaufend <esc> drücken und zurück zu Bild 13</esc>		
14	SAFETY	Mit <ok> bestätigen und weiterfahren</ok>	
	VD (Ventilöffnungsverzögerung) (0 Default)		
	VO (Ventilöffnungsbegrenzung) (0 Default)	In Rild 15, cinctollon mit +/	
	PA (Drucksensor Alarmverzögerung wenn Kompressor ON) (5 s Default)	Weiterfahren/bestätigen mit <ok> Verlassen mit <esc></esc></ok>	
	TL (Untere Grenze für Temperaturfühler) (-40 °C / -40 °F Default)		
	MI (Minimale Überhitzung ΔT) (2 K / 3.6 °F Default)		
	Fortlaufend <esc> drücken und zurück zu Bild 14</esc>		
15	SIMU MODE (Simulationsmodus)	Mit <ok> bestätigen und weiterfahren</ok>	
16	MAN EIV (manuelles Öffnen des Ventils mittels internem DC 010 V Signal) Achtung! Auf eigene Gefahr! Eine ernsthafte Beschädigung des Kompressors ist möglich!	In Bild 15, <ok> drücken Verlassen mit <esc></esc></ok>	
17	EIV (Ist-Wert Ventilposition EIV zur manuellen Ventilöffnung MAN EIV)	In Bild 16, nochmals <ok> drücken.</ok>	
18	TO (Ist-Wert Verdampfungstemperatur) TOH (Ist-Wert Sauggastemperatur)	In Bild 17, einstellen mit +/-	
	Fortlaufend < ESC> drücken und zurück zu Bild 15		

en Contents

1	Introduction	28
2	Functional description	28
3	System components	28
3.1	Mounting and installation	29
3.2	Wiring the peripheral devices	31
4	Controller	32
4.1	Operation	32
4.2	Operating modes	32
5	Commissioning	33
5.1	Short commissiong of the controller	33
5.1.1	Checking the display	33
5.2	Checking the installation	33
5.3	Configuring the controller	33
5.4	Checking the peripheral devices	38
5.5	Regulation operation	40
5.6	Adjusting the superheat controller	41
6	Controlling the cooling capacity	43
6.1	General	43
6.2	Operating principle	43
6.3	Application	44
6.3.1	External capacity control (EXT.)	44
6.3.2	Internal capacity control (INT.)	45
6.4	Commissioning and optimizing the capacity	
	controller	46
7	Rectification of faults	47
8	Brief overview of the pictures on the displa	ay 48

1 Introduction

This manual contains all the information required to install, operate and commission PolyCool[™] Superheat. All the required user-specific settings can be made directly on the device, without the use of additional tools.

2 Functional description

The following functions allow an optimal filling of the evaporator by using PolyCool™ Superheat:

- Control of the superheat
- Monitoring of minimum superheat
- MOP function (Maximum Operating Pressure)
- Monitoring of pressure and temperature sensor
 - ⇒ Alarm contact: The monitoring function can, depending on the wiring, activate an alarm horn or be integrated into the safety chain of the compressor.

• Service function (manual opening of the valve) Optionally, it is possible to configure control of the cooling capacity (refer to chapter 6)

3 System components

PolyCool[™] Superheat contains the following components:

- Controller: RWR462.10
- Electronic injection valve: MVL661...-...
- Pressure sensor: QBE9101-P10U with 4...20 mA output signal
- Temperature sensor: QAZ21.682/101, -50...80 °C / -58...176 °F

The devices above require a supply voltage of AC / DC 24 V. For AC 24 V, we recommend an isolation transformer with a minimum of 25 VA.

3.1 Mounting and installation

Controller

A Mounting on DIN rail

No further parts are needed.

B Wall mounting

With four ellipse screws for holes with diameter of 4 mm x 6 mm

C Flush panel mounting

With HVAC Products ARG462.10 mounting kit Mounting instruction M 3351.1

Electronic injection valve (EIV)

Laboratory measurements reveal that control performance improves when the valve is installed higher than the evaporator (min. 5 cm)! This is especially important with plate heat exchangers.

3371Z22

- Before soldering the valve into the pipework, the flow direction must be carefully checked
- Make sure that all soldering material, copper grindings etc. are removed from the pipework
- The valve body must be cooled with a wet cloth during the soldering
- Mount a filter upstream to the valve
- The pipework must be fixed so that the valve connection supports do not come under any mechanical load. Vibrations can lead to pipework breaking!
- Evaporator temperature below 0 °C: the valve body (incl.top/signal converter)and pipework leading away from the valve must be isolated
- Evaporator temperature above 0 °C: only the valve body and the pipes leading away from the valve must be isolated (see picture).

Do not isolate upper part and electronics (overheating)!

Pressure sensor

- Pressure sensor must be mounted upright over the pipework
- Can be mounted directly on the suction pipe

Temperature sensor

- Mount as near as possible to the evaporator outlet (max. distance 2 m / 6.5 ft) on a straight piece of pipework / inmediately after or on the outside part of an elbow
- Fix with a cable tie
- Isolate

Note

The further the sensor is from the evaporator, the more stable the control (max. 2 m).

It is recommended to increase the setpoint of superheat accordingly.

3.2 Wiring the peripheral devices

The peripheral devices must be wired in accordance with the following connection diagram:

Devices		Terminal as	erminal assignments	
X1	Pressure sensor QBE9101-P10U	X1, 24 VDC	Evaporation pressure	
X2	Temperature sensor QAZ21.682/101	X2, GND	Suction gas temperature	
X4	Only if capacity control is configured:	X3	EIV position feedback signal	
	- Temperature sensor active	X4, GND	For configured capacity control:	
	- Signal transmitter DC 010 V /		- External signal DC 010 V / 420 mA	
	420 mA *		- Medium temperature (active sensor)	
X5	Temperature sensor QAZ21.682/101	X5, GND	For configured internal capacity control:	
	(only required for internal capacity		- Medium temperature (passive sensor)	
	control)			
K1	Enable	D1, M	Enable	
M1	Compressor	Q13, Q14	Compressor	
N1	Controller RWR462.10	G, G0	Power supply AC / DC 24 V	
Y1	Electronic injection valve (EIV)	Y1	Positioning signal EIV (DC 010 V)	
	MVL661			

* Usable range: -0.5...10.5 V / 3.5...20.5 mA. Outside this range, the controller locks out!

4 Controller

4.1 Operation

To operate the controller, use the operating buttons on the controller front.

- Press the <OK> button to enable changes, or confirm a change.
- Press the +/- button to change the flashing data, or select the information screen.
- Press the <ESC> button to exit out of the current level and return to the previous one.

A flashing display indicates adjustable data.

4.2 Operating modes

The controller functions are divided into four operation modes: regulation, configuration, parameter and simulation.

You can activate any desired mode by simulataneously pressing the +/- buttons and holding them for a least five seconds. Release the buttons when C1 is flashing.

Follow procedures below to access the operation mode, as appropriate.

Operation modes	Procedures	
	When C1 is flashing, press <ok> to</ok>	
	confirm.	
Configuration mode	Select the mode with +/-, and press	
Parameter mode	<ok> to confirm.</ok>	
	Or, press <esc> to exit the current</esc>	
Simulation mode	operation level.	

After setting all necessary parameters, the controller will by default display in regulation mode with superheat setpoint, current value of superheat, and actual opening of the valve.

5 Commissioning

5.1 Short commissiong of the controller

PolyCool superheat controller is basically "plug & play", only the refrigerant has to be selected.

Procedures	Descriptions
Step 1	All peripheral devices are connected.
Step 2	Apply power to the controller.
Step 3	Select the refrigerant

5.1.1 Checking the display

After power on, the controller LCD will display and test all segments (Picture 1).

To help users understand the manual better, all operational pictures are numbered consectively as they appear.

See also «Brief overview of the pictures on the display», Chapter 8.

5.2 Checking the installation

Before applying power, be sure to check that the system components have been installed and wired in accordance with sections 3.1 and 3.2.

5.3 Configuring the controller

Following the initial power up, the controller automatically enters the configuration mode. If a refrigerant has already been specified, the regulation mode will immediately be enabled upon power up. On the second and following starts, it is possible to activate the configuration mode by simultaneously pressing down the **+/-** buttons and holding them for at least five seconds.

If settings in the configuration mode (CONF) are changed while the controller is in operation (does not apply to units), controller output Y1 will switch to 0 V. In that case, the control will be released again only after all following parameters have been enabled by pressing the <ESC> button on the right (controller must be brought into the Regulation mode).

Note

Configuration mode CONF

(Continue with <OK> / picture 3)

In this mode, you enter the refrigerant used in your plant. Additionally, it is possible to select the units of pressure, temperature and EIV. You can also configure the types of sensors according to your specific application.

An incorrect entry for the refrigerant can damage your plant!

Optionally, it is possible to configure the control of the cooling capacity (refer to chapter 6). The controller by default comes with capacity control deactivated.

Picture	Function	Parameter	Code	Adjustable range/ increment	Setting Default	Procedure
4	REFRIG ¹⁾	Refrigerant type	REFRIG	R22, R23, R134a,	NA	Set with +/-
				R152a, R170, R290,		
				R401a, R401b, R401c,		Confirm
				R402a, R402b, R404a,		with <ok></ok>
				R406a, R407a, R407b,		
				R407c, R408a, R409a,		Exit with
				R410a, R410b, R417a,		<esc></esc>
				R502, R507, R600,		
				R600a, R717, R723,		
				R744, R1270		
5	ENABLE ²⁾	Enable/disable	COMP	ON (for C1)	ON	
		compressor and	Fb ³⁾	ON/OFF	OFF	
		EIV feedback				
6	CAP ⁴⁾	Application	-	NO = simple superheat	NO	
				(Application 1)		
				EXT = External		
				capacity control		
				(Application 2)		
				INT = Internal capacity		
				control (Application 3)		
7	SENSOR	Sensor 1	X1	QBE9101-P10U with	-	
				420 mA output		
		Sensor 2	X2	Ni1000	Ni1000	
		Sensor 3	X3	0…10 V, 4…20 mA	010 V	

Picture	Function	Parameter	Code	Adjustable range/ increment	Setting Default	Procedure
		Sensor 4 ⁵⁾	X4	For configured internal	-	
				capacity control: NO,		
				010 V, 420 mA		
				For configured		
				external capacity		
				control: 010 V,		
				420 mA		
		Sensor 5 ⁵⁾	X5	Ni1000	Ni1000	
8	RANGE 6)	X4	LO	-9090 °C / 0.1 °C	-35.0°C /	
				-130194 °F / 0.1 °F	-31.0°F	
			ні	-9090 °C / 0.1 °C	+35.0°C /	
				-130194 °F / 0.1 °F	+95.0°F	
9	UNITS	Temperature	т	°C(K), °F	°C(K)	
		Pressure	Р	Bar, Psi	Bar	
		EIV opening	EIV	V, %	%	

- ¹⁾ R290 and R1270 can only be used for explosion-proof valves. R717 requires the use of valves suited for ammonia!
- ²⁾ Circuit 1 is the default working system, and the compressor of Circuit 1 cannot be disabled.
- ³⁾ If the differential value between EIV position feedback signal (X3) and EIV positioning signal (Y1) is over 10 %, the screen about EIV feedback will flash continuously.
- ⁴⁾ CAP will be displayed on the regulation mode if capacity control is configured.
- ⁵⁾ Selection of X4 and X5 varies with the application you configured. Setting the value of X4 as NO means sensor X5 will be used.
- ⁶⁾ The range limit (RANGE) can be configured only if internal capacity control (application 3) and X4 have been selected.

Parameter mode / PARA

(Continue with <OK> / picture 10)

In this mode, you can enter the setpoint of superheat as well as the parameters for superheat control, the MOP function, and the capacity control (if configured), and safety control (if configured). Control of superheat is accomplished with a PID controller. Both the MOP function and capacity control use a PI algorithm.

Picture	Function	Parameter	Code	Adjustable Range/increment	Settings Default	Procedure
11	ΔT	Setpoint	SP	016 K / 0.1 K 028.8 °F / 0.1 °F	6.0 K / 10.8 °F	Set parameter /
		P-band	XP	2160 K / 1 K 3288 °F / 1 °F	10 K / 18 °F	value with +/-
		Integral action time	TN	0600 s / 1 s	30 s	Confirm
		D-part	D	05 / 1	0	with
12	CAP ¹⁾	Max. increase of ∆T SP	SMX Example see page 43	050 K / 0.1 K 090 °F / 0.1 °F	18.0 K / 32.4 °F	<ok></ok>
		External signal direction ²⁾	SD	-1 (0 V / 4 mA = max. cooling cap.) 1 (0 V / 4 mA = min. cooling cap.)	1	<esc></esc>
		Setpoint	SP	-4590 °C / 0.1 °C -49194 °F / 0.1 °F	6.0 °C / 42.8 °F	
		P-band	XP	2160 K / 1 K 3288 °F / 1 °F	35 K / 63 °F	
		Integral action time	TN	0600 s / 1 s	95 s	
13	MOP	Setpoint	SP	-4535 °C / 0.1 °C -4995 °F / 0.1 °F	15.0 °C / 59.0 °F	
		P-band	XP	2160 K / 1 K 3288 °F / 1 °F	5 K / 9 °F	
		Integral action time	ΤN	0600 s / 1 s	30 s	
14	SAFETY 3)	Valve startup delay time	VD	030 s / 1s	0 s	
Picture	Function	Parameter	Code	Adjustable Range/increment	Settings Default	Procedure
---------	----------	--	------------------	-----------------------------------	--------------------------------------	-----------
		Valve startup opening limit	VO	050 % / 1 %	0 %	
		Pressure sensor alarm delay when compressor ON	PA	030 s / 1 s	5 s	
		Low limit for temperature measurement	TL ⁴⁾	-5040 °C / 1 °C -5840°F / 1 °F	-40 °C / 1 °C -40 °F / 1 °F	
		Minimum superheat ΔT	MI	04 K / 07.2 °F	2 K / 3.6 °F	

¹⁾ Can be parameterized only if external or internal capacity control has been selected in the configuration mode.

²⁾ SD can be parameterized only if external capacity control has been selected in the configuration mode.

SD = -1

means that 0 V / 4 mA corresponds to max. cooling capacity SD = 1

means that 0 V / 4 mA corresponds to min. cooling capacity

³⁾ Operation safety control

⁴⁾ Once the actual temperature value is over this limit of TL, an alarm will appear.

Remark The MOP function can be set up using the parameters. Normaly, the factory settings should not be changed.

5.4 Checking the peripheral devices

The peripheral devices can be tested as follows:

Temperature and pressure sensors

The two sensors are working properly if, in the regulation mode, the displayed measured values of the evaporation temperature TO and the suction gas temperature TOH are realistic (reference measurements). If internal capacity control is configured, the sensor for the medium temperature must also be checked. For potential faults, refer to chapter 7.

Electronic injection valve

In the simulation mode, you can pre-set an opening degree (MAN EIV) for the electronic injection valve. In the same mode, you can check if the actual position of the value (EIV) matches the manual set position (MAN EIV)

Note It should be noted that a small difference between positioning signal and position feedback signal is the rule, but the difference should not significantly vary over the entire positioning range.

Simulation mode / SIMU

(Continue with <OK> / picture 15)

Picture	Function	Parameter	Code	Adjustable range	Settings Default	Procedure
16	Manipulated EIV opening degree	Setpoint * DC 010 V signal	MAN EIV	010 V / 0.1 V	0.0 V	Set parameter / value with +/-
17	EIV actual position feedback to the manipulated opening	DC 010 V signal 0100 % opening	MAN EIV EIV	-	-	Confirm with <ok> Back to regulation</ok>
18	Actual value display	Evaporation temperature Suction gas temperature	то тон		-	mode with <esc></esc>
	Continously press <esc> to exit</esc>					

* Caution! At your own risk!

- In the simulation mode, the monitoring functions are deactivated if not enabled via D1. Therefore, your plant could be seriously damaged.
- In the simulation mode, the monitoring functions can be deactivated on purpose (through D1). This allows the plant to be manually operated for about 15 minutes.

5.5 Regulation operation

During regulation operation, the regulation mode is enabled. In this operating mode, all the inputs and outputs are displayed.

Regulation mode

Picture	Parameter & Code	Position	Procedures
	Actual superheat value	Line 1	Press +/-
19	Superheat setpoint ($\Delta T SP$)	Line 2	to navigate
	Actual EIV opening (EIV)	Line 3	to the desired
	EIV feedback signal (Fb)	Line 1	screen.
19a ¹⁾	Calculated EIV opening	Line 2	
	Actual EIV opening (EIV)	Line 3	
	(blank)	Line 1	
20	Evaporation temperature (TO)	Line 2	
	Evaporation pressure (PO)	Line 3	
	(blank)	Line 1	
21	Evaporation temperature (TO)	Line 2	
	Suction gas temperature (TOH)	Line 3	
	EXT (external signal)	Line 1	
21a ²⁾	Actual external signal	Line 2	
	(blank)	Line 3	
	Actual medium temperature (TM)	Line 1	
21b ³⁾	Setpoint of medium (CAP SP)	Line 2	
	(blank)		
	The selected refrigerant (R)	Line 1	
22	(blank)	Line 2	
	(blank)	Line 3	

¹⁾ If feedback signal (Fb) is disabled, picture 19a will not be displayed.

- ²⁾ Picture 21a will be displayed for configured external capacity control.
- ³⁾ Picture 21b will be displayed for configured internal capacity control.

5.6 Adjusting the superheat controller

If the system wiring and all peripherals are okay, the plant can be switched on. The default parameters for superheat control (XP, TN and D) can be optimised as follows:

- After switching on the plant, wait until the steady state condition has been reached which requires two to five minutes. The drawing above shows the possible graph of the superheat during the start-up transient condition.
- b) Determine the maximum deviation (MA) from the setpoint ∆T SP. Use display of superheating in regulation operation mode for this.
- c) Increase XP (e.g. double) or decrease XP (e.g. by half).
- After changing XP, wait for at least two cycles and then re-determine the deviation. The change in MA determines further adjustments. Please read the table below.
- e) Once you have determined the optimal value for XP, it probably will not need any further changes.
- f) Repeat steps c) to e) with TN in the place of XP.
- g) Repeat steps c) to e) with D in the place of XP.

	MA became smaller	MA became larger
XP has been increased	Increase XP again and continue with step d) until MA begins to become larger. Then set XP back to the value where MA was at its smallest value (optimum value).	Reset XP to its original value and then decrease it. Continue with step d).
XP has been decreased	Decrease XP again and continue with step d) until MA begins to increase. Then set XP back to the value where MA was at its smallest value (optimum value).	Reset XP to its original value and then increase it. Continue with step d).

6 Controlling the cooling capacity

6.1 General

The cooling capacity of the refrigeration unit drops as the superheat of the suction gas increases. This effect can be utilized by PolyCool Superheat for controlling the cooling capacity.

6.2 Operating principle

The capacity controller continuously varies with the setpoint of superheat within a certain range. The assignment is made proportionally to a DC 0...10 V signal, or to the manipulated variable of the capacity controller. DC 0 V / 4 mA corresponds to the setpoint of superheat (Δ T SP), and DC 10 V / 20 mA corresponds to the sum of (Δ T SP+SMX) based on the configuration of. Both parameters can be entered in the parameter mode. The greater SMX, the more the cooling capacity can be reduced. But as the capacity drops, the evaporation pressure will also drop, and thus the evaporation temperature. The average drop for each additional K superheat is as follows:

SMX	 The evaporation temperature by 1 °C The cooling capacity Q₀ by 3.1 %
Exemple	Required is a reduction in cooling capacity of 50 %, i.e. 50 % / 3.1 \cong 16 K for SMX
	To ensure lubrication and cooling of the compressor at all times, superheat cannot be increased beyond certain limits. For the minimum permissible suction pressure, refer to the compressor's specification sheet.
	If the cooling capacity is reduced too much, excessive icing can occur on the evaporator (air coolers). The drop in evaporator temperature should also be observed for chillers
	without frost protection.

6.3 Application

PolyCool™ Superheat supports four different types of application (configuration modes).

Application 1 represents pure superheat control (default). It has been described in the previous chapter. The other three applications are the following:

6.3.1 External capacity control (EXT.)

Input X4 can be used to directly change the setpoint of superheat within the limits specified in the parameter mode (SMX) by applying a DC 0...10 V / 4...20 mA signal based on the configuration of external signal direction (SD). Usually, this signal is delivered by an external controller (i.e. Synco, Saphir and other third-party.) whose task it is to maintain the medium temperature at a constant level. The controller measures the medium temperature, calculates the manipulated variable and converts it to a DC 0...10 V / 4...20 mA signal.

Mode of operation

10 V / 20 mA ≅ min. Q₀ 0 V / 4 mA ≅ max. Q₀ (100 %) When SD=1 (see page 36, picture 12)

6.3.2 Internal capacity control (INT.)

Input X4 can be used to directly acquire the medium temperature TM with an active temperature sensor X4 with DC 0...10 V / 4...20 mA output, or passive (Ni1000) temperature sensor X5. In the configuration mode, the input can be appropriately configured (pictures 6 and 7). The actual value of the medium temperature is compared with the setpoint CAP SP, and the controller for the medium temperature (capacity controller) appropriately adjusts the setpoint of superheat. The setpoint of the medium temperature and the control parameters can be entered in the parameter mode.

6.4 Commissioning and optimizing the capacity controller

The controller is commissioned as described in chapter 5. If possible, it should be commissioned using only pure superheat control.

After optimizing the control parameters as described in section 5.5, capacity control must be configured and parameterized. In principle, the parameters (XP, TN) of the capacity controller are to be optimized according to section 5.5. They must always be selected such that they are considerably greater than the parameters of the superheat controller.

7 Rectification of faults

When any fault signal is detected, the alarm $\frac{2}{3}$ icon will flash and the LCD displays ERR (or FAIL) with the corresponding parameter.

Component	Fault	Possible cause / remedy
Passive temperature	Measured value flashes Display: FAIL	Sensor cable with an open-circuit / not connected, or a short-circuit
sensor Ni1000	Measured value flashes Display: ERR / LO	Measured value $\leq TL$
	Measured value flashes Display: ERR / HI	Measured value \ge 80 °C
Active temperature sensor with DC 010 V / 420 mA signal or other DC 010 V / 420 mA	Measured value flashes Display: ERR / LO	Measured value \leq -0.5 V or 3.5 mA (in external capacity control) Measured value \leq 0 V or 4 mA (in internal capacity control with active temperature sensor)
signal transmitters (Synco, Saphir and other third-party controller)	Measured value flashes Display: ERR / HI	Measured value \geq 10.5 V or 20.5 mA (in external capacity control) Measured value \geq 10 V or 20 mA (in internal capacity control with active temperature sensor)
Pressure sensor	Measured value flashes Display: ERR / LO	Measured value \leq 4 mA
	Measured value flashes Display: ERR / HI	Measured value \ge 20 mA
Electronic injection valve (EIV)	No position feedback signal = 0 V	Connecting cable for feedback signal with an open-circuit / not connected
· · · · ·	Valve does not open	Connecting cable not connected
		In the simulation mode, the valve can be checked by manually entering the degree of opening and by comparing it with the position check back signal
	Desition feedback signal	Valve faulty
	does not match the	(for connection terminals, refer to data sheet)
	of opening	Open-circuit or valve faulty
	Icing of evaporator when valve is closed	Valve faulty Electronic calibration of valve not correct Valve does not fully close; possibility of dirt inside the valve
Controller	No display	Check power supply (AC / DC 24 V)
	Manipulated variable always 0 V (Y1)	Short-circuit / sensor with open-circuit No enabling via D1 * Controller faulty
	Icing of evaporator with no enabling via D1	Controller output Y1 is not 0 V \Rightarrow Controller faulty
		External noise voltage on the signal line to the EIV

For any faults about the enabling signal D1, the compressor icon will flash simultaneously.

8 Brief overview of the pictures on the display

For the values of the setting variables and their increments, refer to chapter 5.

Picture	Display	Procedure
1	Display segment test for about 5 s	
2	Selection of the circuit	Simutaneously press down +/- buttons for at least 5 seconds. Set with +/- and press <ok> to confirm.</ok>
	After selecting the circuit, select the following confirm.	g mode with +/- and press <ok> to</ok>
3	CONF MODE (configuration mode)	Press <ok> to confirm and proceed</ok>
4	REFRIG (selection of refrigerant)	
5	ENABLE (Enabling/disabling the	
	compressor and EIV feedback signal)	In picture 3, set with +/-
6	CAP	Continue/confirm with <ok></ok>
7	SENSOR	Exit with <esc></esc>
8	RANGE (Measurement range of X4)	
9	UNITS Or a time set to a set	
10	Continously press <esc> and back to pictul</esc>	Proce CKS to confirm and proceed
10	PARA MODE (parameter mode)	Press <ok> to confirm and proceed</ok>
11	ΔI	Press <uk> to confirm and proceed</uk>
	(6.0 K / 10.8 °E default)	
	(0.0 K / 10.0 F deladit)	
	(10 K / 18 °F default)	In picture 11, set with +/-
	AT TN (integral action time superheat)	Continue/confirm with <ok></ok>
	(30 s default)	Exit with <esc></esc>
	ΔT D (D-part of superheat)	
	(0 default)	
	Continously press <esc> and back to pictur</esc>	re 10
12	CAP	Press <ok> to confirm and proceed</ok>
	CAP SMX (max. setpoint increase) (18.0 K / 32.4 °F default)	
	CAP SD (external signal direction)	
	(SD=1 indicates that 0 V / 4 mA	
	corresponds to min. cooling capacity)	In picture 12, set with +/-
	CAP SP (setpoint of capacity control) (6.0 °C / 42.8 °F default)	Continue/confirm with <ok> Exit with <esc></esc></ok>
	CAP XP (P-band)	
	(35 K / 63 °F default)	
	CAP TN (integral action time)	
	(5 s default)	
	Continously press <esc> and back to pictur</esc>	re 12

Picture	Display	Procedure
13	МОР	Press <ok> to confirm and proceed</ok>
	MOP SP (Setpoint of MOP) (15 °C / 59 °F default)	In picture 13, set with +/
	MOP XP (P-band of MOP) (5 K / 9 °F default)	Continue/confirm with <ok></ok>
	MOP TN (integral action time of MOP) (30 s default)	
	Continously press <esc> and back to picture 13</esc>	
14	SAFETY (safety control)	Press <ok> to confirm and proceed</ok>
	VD (Valve startup delay time) (0 default)	
	VO (Valve startup opening limit) (0 default)	
	PA (alarm delay of pressure sensor time when compressor ON) (5 s default)	In picture 15, set with +/- Continue/confirm with <ok> Exit with <esc></esc></ok>
	TL (Low limit for temperature measurement) (-40 °C / -40 °F default)	
	MI (Minimum superheat ΔT) (2 K / 3.6 °F default)	
	Continously press <esc> and back to picture 14</esc>	
15	SIMU MODE (simulation mode)	Press <ok> to confirm and proceed</ok>
16	MAN EIV (manual opening of the valve by means of	
	internal DC 010 V signal)	In picture 15, press <ok></ok>
	Caution! At your own risk!	Exit with <esc></esc>
	May cause serious damage to the compressor!	
17	EIV (the actual position of EIV to the manipulated opening MAN EIV)	In picture 16, press <ok> again.</ok>
18	TO (actual value of evaporation temperature) TOH (actual value of suction gas temperature)	In picture 17, set with +/-
	Continously press <esc> and back to picture 15</esc>	•

fr Sommaire

1	Introduction5	52
2	Description des fonctions5	52
3	Composants du système5	52
3.1	Montage et installation	53
3.2	Câblage des périphériques5	55
4	Régulateur5	56
4.1	Exploitation	56
4.2	Modes d'exploitation5	56
5	Mise en service5	57
5.1	Mise en service rapide du régulateur	57
5.1.1	Vérification de l'affichage	57
5.2	Vérification de l'installation5	57
5.3	Configuration du régulateur	57
5.4	Vérification des périphériques6	32
5.5	Fonctionnement de la régulation6	34
5.6	Configuration du régulateur de surchauffe6	35
6	Régulation de la puissance frigorifique6	57
6.1	Généralités6	37
6.2	Principe de fonctionnement6	37
6.3	Application6	38
6.3.1	Régulation externe de la puissance (EXT.)6	38
6.3.2	Régulation interne de la puissance (INT.)6	39
6.4	Mise en service et optimisation du régulateur de	
	puissance7	'0
7	Elimination des défauts7	′1
8	Aperçu rapide des images de l'affichage7	2

1 Introduction

Ce manuel fournit les informations nécessaires à l'installation, l'exploitation et la mise en service de PolyCool™ Superheat. Tous les réglages utilisateur peuvent être effectués directement sur l'appareil, sans outils.

2 Description des fonctions

Les fonctions suivantes garantissent le remplissage optimal de l'évaporateur:

- Régulation de la surchauffe
- Surveillance de la surchauffe minimum
- Fonction MOP (pression maximale en service)
- Surveillance de la sonde de pression et de température
 - ⇒ Contact d'alarme: la fonction de surveillance peut, selon le câblage, activer un avertisseur sonore ou être intégrée dans la chaîne de sécurité du compresseur.

• Fonction de service (ouverture manuelle de la vanne) En option, on peut configurer la régulation de la puissance frigorifique (cf. Chapitre 6)

3 Composants du système

PolyCool[™] Superheat se compose des appareils suivants:

- Régulateur: RWR462.10
- Vanne d'injection électronique: MVL661...-...
- Sonde de pression: QBE9101-P10U avec signal de sortie 4...20 mA
- Sonde de température: QAZ21.682/101, -50...80 °C / -58...176 °F

Les appareils ci-dessus nécessitent une tension d'alimentation de 24 V~/-.

Pour AC 24 V (24 V~), nous préconisons un transformateur d'isolation de 25 VA minimum.

3.1 Montage et installation

Régulateur

A Montage sur rail DIN

Aucun accessoire supplémentaire n'est nécessaire.

B Montage mural

Avec quatre vis en ellipse pour des orifices de diamètre 4 mm x 6 mm

C Montage encastré

Avec kit d'assemblage ARG462.10 de HVAC Products Instructions de montage M 3351.1

Vanne d'injection électronique (EIV)

Des mesures en laboratoire ont démontré que la régulation est plus efficace si la vanne est montée à un endroit plus élevé que l'évaporateur (min. 5 cm)! Ceci s'avère particulièrement important avec les échangeurs à plaques.

- STATES

- Avant de souder la vanne sur la tuyauterie, vérifier attentivement le sens d'écoulement.
- Veiller à nettoyer la tuyauterie de toute trace de soudure, poussière de cuivre, etc.
- Refroidir le corps de vanne avec un chiffon humide pendant le soudage
- Monter un filtre en amont de la vanne
- Fixer le tuyau de manière à ne pas surcharger les manchons de raccordement de la vanne. Des vibrations peuvent entraîner une rupture de la tuyauterie.
- Température de l'évaporateur inférieure à 0 °C: isoler le corps de vanne (y compris la partie haute/le convertisseur de signal) et les lignes sortantes
- Température de l'évaporateur supérieure à 0 °C: isoler simplement le corps de vanne et les lignes sortantes, voir schéma; en aucun cas la partie haute avec éléctronique (surchauffe)

Sonde de pression

Sonde de température

- Monter la sonde de pression à la verticale sur la tuyauterie
- Peut-être montée directement sur la tuyauterie d'aspiration

- Monter la sonde aussi près que possible de la sortie de l'évaporateur (distance max. 2 m / 6.5 ft) sur un segment droit de tuyauterie / immédiatement après et à l'extérieur d'un segment coudé
- Utiliser un collier de fixation
- Calorifuger

Remarque

Plus la sonde est éloignée de l'évaporateur, plus la régulation est stable (max. 2 m). Il est recommandé d'augmenter la consigne de surchauffe en conséquence.

3.2 Câblage des périphériques

Les périphériques doivent être câblés conformément au schéma de raccordement suivant:

Appareils		Occupation des bornes	
X1	Sonde de pression QBE9101-P10U	X1, 24 VDC	Pression d'évaporation
X2	Sonde de température QAZ21.682/101	X2, GND	Température de gaz d'aspiration
X4	Uniquement si la régulation de puissance	X3	Signal de recopie de position de l'EIV
	frigorifique est configurée:		
	- Sonde de température active	X4, GND	Pour régulation de la puissance
	- Transmetteur de signal 010 V- /		frigorifique:
	420 mA *		- Signal externe 010 V- / 420 mA
			- Température du fluide (sonde active)
X5	Sonde de temp. QAZ21.682/101	X5, GND	Si la régulation de la puissance interne
	(nécessaire uniquement si régulation de		est configurée:
	la puissance)		- Température du fluide (sonde passive)
K1	Libération	D1, M	Libération
M1	Compresseur	Q13, Q14	Compresseur
N1	Régulateur RW462.10	G, G0	Alimentation AC / DC 24 V (24 V~/-)
Y1	Vanne d'injection électronique (EIV)	Y1	Signal de positionnement EIV
	MVL661		(010 V-)

* Plage d'utilisation: -0.5...10.5 V / 3.5...20.5 mA. En dehors de cette plage, le régulateur est hors service.

4 Régulateur 4.1 Exploitation

L'exploitation du régulateur s'effectue par le biais des boutons en façade de l'appareil.

- Appuyez sur le bouton <OK> pour valider, ou confirmer une modification.
- Appuyez sur le bouton +/- pour modifier les données qui clignotent, ou sélectionner les écrans d'information.
- Appuyez sur <ESC> pour quitter le niveau courant et revenir au précédent.

Des données qui clignotent peuvent être réglées.

4.2 Modes d'exploitation

Les fonctions du régulateur sont réparties entre quatre modes: régulation, configuration, paramétrage et simulation.

Pour activer un mode, appuyez simultanément sur les boutons +/- sans les relâcher pendant au moins cinq secondes. Relâchez-les lorsque C1 clignote.

Procédez comme suit pour accéder au mode adéquat.

Modes d'exploitation	Procédures	
	Lorsque C1 clignote, appuyez sur <ok></ok>	
	pour confirmer.	
Mode Configuration	Appuyez sur +/- pour sélectionner le mode,	
Mode Paramétrage	puis sur <ok> pour confirmer.</ok>	
mode i didinetrage	Ou, appuyez sur <esc> pour quitter le</esc>	
Mode Simulation	niveau actuel.	

Une fois tous les paramètres réglés, le régulateur entre par défaut en mode Régulation et affiche la consigne de surchauffe, la valeur de surchauffe, et l'ouverture actuelle de la vanne.

5 Mise en service

5.1 Mise en service rapide du régulateur

Le régulateur de surchauffe est essentiellement "plug & play"; il n'y a que le réfrigérant à sélectionner.

Procédures	Descriptions
Etape 1	Raccordez tous les périphériques.
Etape 2	Mettez le régulateur sous tension.
Etape 3	Sélectionnez le réfrigérant

5.1.1 Vérification de l'affichage

Après mise sous tension, l'écran LCD du régulateur affiche et teste tous les segments (image 1).

Pour faciliter la compréhension, toutes les images sont numérotées dans l'ordre séquentiel d'apparition.

Cf. aussi «Aperçu rapide des images de l'affichage», Chapitre 8.

5.2 Vérification de l'installation

Avant la mise sous tension, assurez-vous que les composants du système sont installés et câblés conformément aux sections 3.1 et 3.2.

5.3 Configuration du régulateur

A la première mise en route, le régulateur entre automatiquement en mode Configuration. Si un réfrigérant est déjà spécifié, c'est le mode Régulation qui est immédiatement activé au démarrage. Lors des mises en marche suivantes, il est possible d'activer le mode Configuration en maintenant simultanément les boutons +/appuyés pendant au moins cinq secondes.

RemarqueSi l'on modifie des réglages en mode Configuration (CONF)
alors que le régulateur fonctionne (ne concerne pas les
unités), sa sortie Y1 passe à 0 V. Dans ce cas, la régulation
n'est libérée qu'après activation de tous les paramètres
suivants en appuyant sur <ESC> à droite (le régulateur doit
passer en mode Régulation).

Mode Configuration CONF

(Continuez avec <OK> / image 3)

Dans ce mode, vous sélectionnez le réfrigérant à utiliser dans l'installation. En outre, il est possible de sélectionner les unités de pression, température et EIV. Vous pouvez aussi configurer les types de sonde en fonction de vos applications.

Le choix d'un fluide incorrect peut endommager votre installation !

En option, on peut configurer la régulation de la puissance frigorifique (cf. Chapitre 6). Par défaut, la régulation de la puissance frigorifique est désactivée dans le régulateur.

Image	Fonction	Paramètre	Code	Plage / pas réglable	Réglage par défaut	Pro- cédure
4	REFRIG	Type de réfrigérant	REFRIG	R22, R23, R134a, R152a, R170, R290, R401a, R401b, R401c, R402a, R402b, R404a, R406a, R407a, R407b, R407c, R408a, R409a, R410a, R410b, R417a, R502, R507, R600, R600a, R717, R723, R744, R1270	NA	Régler avec +/- Confirmer avec <ok> Sortie</ok>
5 ENABLE Active/désactive COMP le retour de signal compresseur et EIV		Active/désactive COMP		ON (pour C1)	ON	avec
		ON/OFF	OFF	<esc></esc>		
6	CAP ⁴⁾	Application	-	NO = surchauffe simple (application 1) EXT = régulation externe de la puissance (application 2) INT = régulation interne de la puissance (application 3)	NO	
7	SENSOR Sonde 1 X1		X1	QBE9101-P10U avec sortie	-	
				420 MA		
		Sonde 2	X2	Ni1000	Ni1000	
i		Sonde 3	X3	010 V, 420 mA	010 V	

Image	Fonction	Paramètre	Code	Plage / pas réglable	Réglage par défaut	Pro- cédure
		Sonde 4 5)	X4	Si la régulation de la puissance interne est configurée: NO ⁵⁾ , 010 V, 420 mA Si la régulation externe de la puissance frigorifique est configurée: 010 V, 420 mA	-	
_		Sonde 5 ⁵⁾	X5	Ni1000	Ni1000	
8	RANGE ⁶⁾	X4	lo Hi	-9090 °C / 0.1 °C -130194 °F / 0.1 °F -9090 °C / 0.1 °C -130194 °F / 0.1 °F	-35.0 °C / -31.0 °F +35.0 °C / +95.0 °F	
9	UNITS	Température	т	°C(K),°F	°C(K)	
		Pression	Р	Bar, Psi	Bar	
		Ouverture EIV	EIV	V, %	%	

- 1) R290 et R1270 ne peuvent être utilisés que pour des vannes antidéflagrantes. R717 nécessite l'utilisation de vannes compatibles avec l'ammoniac.
- 2) Le circuit 1 est le système de fonctionnement par défaut, et le compresseur du circuit 1 ne peut pas être désactivé.
- 3) Si le différentiel entre le signal de recopie de position de l'EIV (X3) et le signal de positionnement de l'EIV (Y1) est supérieur à 10 %, l'écran du signal de recopie EIV clignote en permanence.
- 4) CAP s'affiche en mode Régulation si la régulation de la puissance frigorifique est configurée.
- 5) La sélection de X4 et X5 dépend de l'application configurée. Si vous réglez la valeur de X4 sur NO, la sonde X5 sera utilisée.
- 6) La limite de la plage (RANGE) ne peut être configurée que si la régulation interne de la puissance frigorifique (application 3) et X4 ont été sélectionnées

Mode Paramétrage / PARA

(Continuez avec <OK> / image 10)

Dans ce mode, vous pouvez entrer la consigne de surchauffe ainsi que les paramètres de régulation de cette dernière, de la fonction MOP, de la régulation de la puissance frigorifique (le cas échéant) et de l'automatisme de sécurité (le cas échéant). La régulation de la surchauffe s'effectue via un régulateur PID. La fonction MOP et la régulation de puissance utilisent un algorithme PI.

Image	Fonction	Paramètre	Code	Plage/pas réglable	Réglages par défaut	Procédure
11	ΔT	Consigne	SP	016 K / 0.1 K	6.0 K	Régler les
				028.8 °F / 0.1 °F	10.8 °F	paramètres/
		Action	XP	2160 K / 1 K	10 K	valeurs avec
		proportionnelle		3288 °F / 1 °F	18 °F	+/-
		Temps d'intégration	ΤN	0600 s / 1 s	30 s	
		Part D	D	05 / 1	0	Confirmer
12	CAP ¹⁾	Augmentation max	SMX	050 K / 0.1 K	18.0 K	avec
		de ∆T SP	Cf. Exem. page 67	090 °F / 0.1 °F	32.4 °F	<0K>
		Sens du signal	SD	-1 (0 V / 4 mA =	1	
		externe ²⁾		puiss. frigo. max.)		<esc> pour</esc>
				1 (0 V / 4 mA =		quitter
				puiss. frigo. min.)		
		Consigne	SP	-4590 °C / 0.1 °C	6.0 °C	
				-49194 °F / 0.1 °F	42.8 °F	
		Action	XP	2160 K / 1 K	35 K	
		proportionnelle.		3288 °F / 1 °F	63 °F	
		Temps d'intégration	TN	0600 s / 1 s	95 s	
13	MOP	Consigne	SP	-4535 °C / 0.1 °C	15.0 °C	
				-4995 °F / 0.1 °F	59.0 °F	
		Action	XP	2160 K / 1 K	5 K	
		proportionnelle		3288 °F / 1 °F	9 °F	
		Temps d'intégration	TN	0600 s / 1 s	30 s	
14	SAFETY	Temporisation	VD	030 s / 1s	0 s	
	3)	démarrage vanne				
		Limite d'ouverture	VO	050 % / 1 %	0 %	
		vanne au démarrage				

Image	Fonction	Paramètre	Code	Plage/pas réglable	Réglages par défaut	Procédure
		Temporisation	PA	030 s / 1 s	5 s	
		alarme sonde de				
		pression si				
		compresseur EN				
		Limitation minimale	TL ⁴⁾	-5040 °C / 1 °C	-40°C/ 1°C	
		pour mesure de la		-5840 °F / 1 °F	-40°F/ 1°F	
		température				
		Surchauffe minimum	MI	04 K / 07.2 °F	2 K / 3.6°F	
		ΔΤ				

- 1) Paramétrable uniquement si la régulation interne ou externe de la puissance frigorifique a été sélectionnée en mode Configuration.
- 2) SD n'est paramétrable que si la régulation externe de la puissance calorifique a été sélectionnée en mode Configuration. Si SD = -1, 0 V / 4 mA correspond à la puissance frigorifique maximale Si SD = 1, 0 V / 4 mA correspond à la puissance frigorifique minimale.
- 3) Automatisme de sécurité

- 4) Dès que la température mesurée dépasse TL, une alarme est émise.
- Remarque La fonction MOP peut être configurée à l'aide de ces paramètres. Normalement, il n'est pas nécessaire de modifier les réglages d'usine.

5.4 Vérification des périphériques

Les périphériques peuvent être testés comme suit:

Sondes de pression et de température

On peut déduire que les deux sondes fonctionnent correctement si, en mode Régulation, les températures d'évaporation TO et de gaz d'aspiration TOH sont réalistes (mesures de référence). Si la régulation interne de la puissance frigorifique est configurée, la sonde de température de fluide doit également être vérifiée. Pour les défauts possibles, cf. Chapitre 7.

Vanne d'injection électronique

En mode Simulation, on peut prescrire un degré d'ouverture (MAN EIV) de la vanne d'injection électronique. Vous pouvez aussi, toujours dans ce mode, vérifier si la position actuelle de la vanne correspond à la position réglée manuellement (MAN EIV)

Remarque il est normal de constater une légère différence entre le signal de réglage et le signal de recopie ; celle-ci ne devrait pas cependant varier de manière significative sur l'ensemble de la plage de réglage.

Mode Simulation / SIMU

(Continuer avec <OK> / image 15)

lm-	Fonction	Paramètre	Code	Plage	Réglages	Procédure
age				réglable	par défaut	
16	Degré d'ouverture manuel EIV	Consigne * Signal 010 V-	MAN EIV	010 V / 0.1 V	0.0 V	Régler les paramètres /
17	Recopie de la position EIV actuelle par rapport à l'ouverture manuelle	Signal 010 V- ouverture 0100 %	MAN EIV EIV	-	-	valeurs avec +/- Confirmer avec <ok></ok>
18	Affichage de la valeur réelle	Température d'évaporation Température de gaz d'aspiration	то тон		-	Retourner avec <esc></esc>
	Appuy	ez en permanence	e sur <e< td=""><td>SC> pou</td><td>r quitter</td><td></td></e<>	SC> pou	r quitter	

* Attention! A vos risques et périls !

- En mode Simulation, les fonctions de surveillance sont désactivées, à moins d'être enclenchées via D1.
 L'installation pourrait donc être sérieusement endommagée.
- En mode Simulation, il est possible de désactiver intentionnellement les fonctions de surveillance (via D1). De cette manière, l'installation peut être exploitée manuellement pendant environ 15 minutes.

5.5 Fonctionnement de la régulation

En fonctionnement normal, le mode Régulation est activé. Toutes les entrées et sorties sont affichées dans ce mode.

Mode Régulation

Image	Paramètre & code	Position	Procédures
19	Valeur de surchauffe actuelle	Ligne 1	Appuyer sur
	Consigne de surchauffe (∆T SP)	Ligne 2	+/- pour
	Ouverture actuelle de l'EIV (EIV)	Ligne 3	accéder à
19a 1)	Signal de recopie EIV (Fb)	Ligne 1	l'écran
	Ouverture calculée de l'EIV	Ligne 2	souhaité
	Ouverture actuelle de l'EIV (EIV)	Ligne 3	
20	(vide)	Ligne 1	
	Température d'évaporation (TO)	Ligne 2	
	Pression d'évaporation (BC)	Ligne 3	
21	(vide)	Ligne 1	
	Température d'évaporation (TO)	Ligne 2	
	Température de gaz d'aspiration	Ligne 3	
	(TOH)		
21a ²⁾	EXT (signal externe)	Ligne 1	
	Signal externe actuel	Ligne 2	
	(vide)	Ligne 3	
21b 3)	Température actuelle du fluide (TM)	Ligne 1	
	Consigne du fluide (CAP SP)	Ligne 2	
	(vide)		
22	Fluide frigorigène sélectionné (R)	Ligne 1	
	(vide)	Ligne 2	
	(vide)	Ligne 3	

¹⁾ Si le signal de recopie (Fb) est désactivé, l'image 19a ne s'affiche pas.

- ²⁾ L'image 21a s'affiche si la régulation externe de la puissance frigorifique est configurée.
- ³⁾ L'image 21b s'affiche si la régulation interne de la puissance frigorifique est configurée.

5.6 Configuration du régulateur de surchauffe

Une fois que le câblage et les périphériques ont été vérifiés, l'installation peut être mise sous tension. Les paramètres par défaut de la régulation de surchauffe (XP, TN et D) peuvent être optimisés comme suit:

- a. Après mise sous tension de l'installation, attendez deux à cinq minutes que l'installation se stabilise. L'évolution possible de la surchauffe pendant la période transitoire au démarrage est illustrée ci-dessus.
- b. Déterminez l'écart maximum (MA) par rapport à la consigne ∆T SP
- c. Relevez (par ex. du double) ou abaissez (de la moitié par ex.) XP.
- Après modification de XP, attendez au moins pendant la durée de deux périodes et déterminez à nouveau l'écart. L'évolution de MA détermine la suite des réglages. Veuillez vous reporter au tableau ci-dessous.
- e. Une fois que vous avez déterminé la valeur optimale de XP, celle-ci ne doit normalement plus être modifiée.
- f. Répétez les étapes c) à e) en remplaçant XP par TN
- g. Répétez les étapes c) à e) en remplaçant XP par D

	MA a diminué	MA a augmenté
XP a	Relevez encore XP et passez à l'étape d)	Ramenez XP à sa
été	jusqu'à ce que MA commence à augmenter.	valeur initiale puis
augmenté	Ramenez ensuite XP à la valeur pour	abaissez-la. Passez à
	laquelle MA était le plus faible (valeur	l'étape d).
	optimale).	
XP a	Abaissez encore XP et passez à l'étape d)	Ramenez XP à sa
été	jusqu'à ce que MA commence à augmenter.	valeur initiale puis
abaissé	Ramenez ensuite XP à la valeur pour	relevez-la. Passez à
	laquelle MA était le plus faible (valeur	l'étape d).
	optimale).	

6 Régulation de la puissance frigorifique

6.1 Généralités

La puissance frigorifique de l'unité de refroidissement diminue à mesure que la surchauffe des gaz d'aspiration augmente. PolyCool Superheat peut tirer parti de cette caractéristique pour régler la puissance frigorifique.

6.2 Principe de fonctionnement

	 Le régulateur de puissance fait varier continuellement la consigne de surchauffe à l'intérieur d'une plage détermir Cette variation est proportionnelle à un signal 010 V-, la grandeur de réglage sur le régulateur de puissance. Le signal 0 V- / 4 mA correspond à la consigne de surchauf (ΔT SP), et un signal 10 V- / 20 mA correspond à la somme de (ΔT SP+SMX) deux paramètres peuvent être entrés en mode Paramétre Plus SMX est élevé, plus la puissance frigorifique peut ê réduite. Mais une baisse de la puissance entraîne une d nution de la pression d'évaporation, et donc de la tempé ture d'évaporation. La baisse moyenne pour chaque K supplémentaire de surchauffe est la suivante: 				
SMX	 1 °C pour la température d'évaporation 3.1 % pour la puissance frigorifique Q₀ 				
Exemple	On souhaite réduire la puissance frigorifique de 50 %, soit 50 % / 3.1 ≅ 16 K pour SMX				
	Pour garantir une lubrification et un refroidissement perman- ent du compresseur, il ne faut pas augmenter la surchauffe au-delà de certaines limites. Pour connaître la pression d'aspiration minimale admissible, reportez-vous à la notice technique du compresseur. Une réduction trop importante de la puissance frigorifique risque d'entraîner une formation excessive de givre sur l'évaporateur (batteries réfrigérantes). On observe également une chute de la température d'évaporation avec les compresseurs frigorifiques sans fonction antigel.				

6.3 Application

PolyCool™ Superheat reconnaît quatre types d'application (modes de configuration).

L'application 1 est la régulation simple de la surchauffe (par défaut). Elle a été décrite dans le chapitre précédent. Les trois autres applications sont les suivantes:

6.3.1 Régulation externe de la puissance (EXT.)

On peut utiliser l'entrée X4 pour modifier directement la consigne de surchauffe dans les limites spécifiées en mode Paramétrage (SMX) en appliquant un signal 0...10 V / 4...20 mA- en fonction du sens d'action du signal externe (SD). Habituellement, ce signal provient d'un régulateur externe (Synco, Saphir et tiers) chargé de maintenir la température du fluide à un niveau constant. Le régulateur mesure la température du fluide, calcule la valeur de réglage et la convertit en un signal 0...10 V / 4...20 mA-.

Mode de fonctionnement 10 V / 20 mA ≅ min. Q₀ 0 V / 4 mA ≅ max. Q₀ (100 %) Si SD=1 (Cf. page 60, image 12)

6.3.2 Régulation interne de la puissance (INT.)

On peut utiliser l'entrée X4 pour acquérir directement la température de fluide TM avec une sonde de température active X4 délivrant un signal 0...10 V / 4...20 mA-, ou une sonde de température passive (Ni1000) X5. L'entrée peut être configurée en conséquence en mode Configuration (images 6 et 7). La température effective du fluide est comparée à la consigne CAP SP; le régulateur ajuste alors la consigne de surchauffe en fonction de cette température (régulateur de puissance). Vous pouvez spécifier la consigne de température de fluide et les paramètres de régulation en mode Paramétrage.

6.4 Mise en service et optimisation du régulateur de puissance

La mise en service du régulateur est décrite au Chapitre 5. Elle doit s'effectuer, dans la mesure du possible, pour une régulation simple de la surchauffe.

Une fois les paramètres de régulation optimisés comme décrit section 5.5, il faut configurer la régulation de puissance. En principe, les paramètres (XP, TN) du régulateur de puissance doivent être optimisés conformément à la section 5.5. Il faut toujours les sélectionner de sorte à ce qu'ils soient beaucoup plus élevés que ceux du régulateur de surchauffe.

Elimination des défauts 7

Lorsqu'un signal de défaut est détecté, l'icône d'alarme 🕸 clignote et le texte ERR (ou FAIL) apparaît sur l'afficheur avec le paramètre correspondant.

Composant	Défaut	Cause possible / dépannage	
Sonde de	La valeur mesurée clignote	Câble de sonde en circuit ouvert / non	
température	Affichage: FAIL	raccordé, ou en court-circuit	
passive Ni1000	La valeur mesurée clignote Affichage: ERR / LO	Valeur mesurée ≤ TL	
	La valeur mesurée clignote Affichage: ERR / HI	Valeur mesurée ≥ 80 °C	
Sonde de température active avec signal 010 V- / 420 mA ou autres transmetteurs de signaux 010 V- /	La valeur mesurée clignote Affichage: ERR / LO	Valeur mesurée \leq -0.5 V ou 3.5 mA (régulation de puissance externe) Valeur mesurée \leq 0 V ou 4 mA (régulation de puissance interne avec sonde de température active)	
420 mA (Synco, Saphir et autres régulateurs tiers)	La valeur mesurée clignote Affichage: ERR / HI	Valeur mesurée ≥ 10.5 V ou 20.5 mA (régulation de puissance externe) Valeur mesurée ≥ 10 V ou 20 mA (régulation de puissance interne avec sonde de température active)	
Sonde de pression	La valeur mesurée clignote Affichage: ERR / LO	Valeur mesurée ≤ 4 mA	
	La valeur mesurée clignote Affichage: ERR / HI	Valeur mesurée ≥ 20 mA	
Vanne d'injection électronique	Pas de signal de recopie de position = $0 V$	Câble de raccordement du signal de recopie er circuit ouvert / non raccordé	
	La vanne ne s'ouvre pas	Câble de raccordement non raccordé	
((())		Pour vérifier la vanne, déterminer manuellement le degré d'ouverture en mode Simulation, et le comparer au signal de recopie de position.	
		Vanne défectueuse	
	Le signal de recopie de position ne correspond pas au degré d'ouverture manuelle	Le câble de recopie n'est pas raccordé (voir la fiche produit pour les bornes de raccordement) Circuit ouvert ou vanne défectueuse	
	Givrage de l'évaporateur lorsque la vanne est fermée	Vanne défectueuse Calibrage électronique de la vanne incorrect. La vanne ne se ferme pas entièrement; encrassement possible à l'intérieur de la vanne	
Régulateur	Pas d'affichage	Vérifier l'alimentation (24 V~/-)	
	Valeur de réglage toujours à 0 V (Y1)	Court-circuit / sonde en circuit ouvert Pas d'activation via D1 * Régulateur défectueux	
	Givrage de l'évaporateur et pas d'activation via D1	La sortie du régulateur Y1 n'est pas à 0 V \Rightarrow Régulateur défectueux	
		Tension parasite externe sur la ligne de signal de l'EIV	

* Tout défaut d'activation du signal D1 est signalé par le clignotement simultané de l'icône 🕢 du compresseur.

8 Aperçu rapide des images de l'affichage

Pour connaître les valeurs de réglage et leur pas, cf. chap. 5.

Image	Affichage		Procédure	
1	Test des s	segments d'affichage pendant env. 5 s		
2	Sélection	du circuit	Appuyez simultanément sur +/- pendant au moins cinq secondes. Réglez avec +/- et validez avec <ok></ok>	
	Après avo <ok> pou</ok>	ir sélectionné le circuit, sélectionnez le mode ur confirmer.	e suivant avec +/- et appuyez sur	
3	CONF MO	DDE (mode Configuration)	Appuyez sur <ok> pour confirmer et continuer</ok>	
4	REFRIG (sélection du réfrigérant)	Image 3, régler avec +/-	
5	ENABLE de recopie	(activer/inhiber le compresseur et le signal e EIV)	Continuer/confirmer avec <ok> Sortie avec <esc></esc></ok>	
6	CAP			
7	SENSOR			
8	RANGE (plage de mesure de X4)		
9	UNITS			
	Maintenez	z <esc> appuyé pour revenir à l'image 3</esc>		
10	PARA MO	DDE (mode Paramétrage)	Appuyez sur <ok> pour confirmer et continuer</ok>	
11	ΔΤ		Appuyez sur <ok> pour confirmer et continuer</ok>	
	∆T SP	(consigne de surchauffe) (6.0 K / 10.8 °F par défaut)	Dans l'image 11, régler avec +/- Continuer/confirmer avec <ok></ok>	
	$\Delta T XP$	(bande P de la surchauffe) (10 K / 18 °F par défaut)	<esc> pour quitter</esc>	
	$\Delta T TN$	(temps d'intégration de la surchauffe) (30 s par défaut)		
	ΔT D	(composante D de la surchauffe) (0 par défaut)		
	Maintenez	z <esc> appuyé pour revenir à l'image 10</esc>		
12	CAP		Appuyez sur <ok> pour confirmer et continuer</ok>	
	CAP SMX	(augmentation max. de la consigne) (18.0 K / 32.4 °F par défaut)	Dans l'image 12, régler avec +/- Continuer/confirmer avec <ok></ok>	
	CAP SD	(sens du signal externe) (Si SD =1, 0 V / 4 mA correspond à la puissance frigorifique minimale)	<esc> pour quitter</esc>	
	CAP SP	(consigne de la régulation de puissance) (6.0 °C / 42.8 °F par défaut)		
	CAP XP	(bande P) (35 K / 63 °F par défaut)		
	CAP TN	(temps d'intégration) (5 s par défaut)		
1	Maintenez	z <esc> appuyé pour revenir à l'image 12</esc>		
Image	Affichage	Procédure		
-------	--	---		
13	МОР	Appuyez sur <ok> pour confirmer et continuer</ok>		
	MOP SP (consigne de MOP)	Dans l'image 13, régler avec +/-		
	(15 °C / 59 °F par défaut)	Continuer/confirmer avec <ok></ok>		
	MOP XP (action proportionnelle de MOP)	<esc> pour quitter</esc>		
	(5 K / 9 °F par défaut)			
	MOP IN (temps d'intégration de MOP)			
	(30 s par defaut)	12		
4.4	Maintenez <esc> appuye pour revenir a rimage</esc>			
14	SAFETY (regulation de la securite)	Appuyez sur <ok> pour confirmer</ok>		
	VD (temperiantian du démorrage de la venne)			
	(0 par défaut)	Continuer/confirmer avec <ok></ok>		
	VO (limite d'ouverture de la vanne au	<esc> nour quitter</esc>		
	démarrage)			
	(0 par défaut)			
	PA (temporisation d'alarme de la sonde de			
	pression si compresseur EN)			
	(5 s par défaut)			
	TL (limitation minimale pour la mesure de la			
	température)			
	(-40 °C / -40 °F par défaut)			
	MI (surchauffe minimale ΔT)			
	(2 K / 3.6 °F par défaut)			
	Maintenez <esc> appuyé pour revenir à l'image</esc>	14		
15	SIMU MODE (mode Simulation)	Appuyez sur <ok> pour confirmer</ok>		
		et continuer		
16	MAN EIV (ouverture manuelle de la vanne	Dans l'image 15, appuyez sur		
	par signal interne 010 V-)	<ok></ok>		
	Attention A vos risques et périls !	<esc> pour quitter</esc>		
	Peut endommager le compresseur !			
17	EIV position actuelle de l'EIV par rapport à	Dans l'image 16, appuyer de		
	TOUVERTURE REGIERE MAN EIV)	nouveau sur <ok></ok>		
18	TOU (temperature de gaz d'appiration effective)	Dans l'image 17, régler avec +/-		
	Mointenez (ESC) enputé nour rougeit à l'incere	15		
	Invantenez <esc> appuye pour revenir a l'image</esc>	15		

it Contenuto

1	Introduzione	76
2	Descrizione delle funzioni	.76
3	Componenti del sistema	76
3.1	Installazione e Montaggio	77
3.2	Collegamenti Elettrici	.79
4	Regolatore	.80
4.1	Funzionamento	.80
4.2	Modi operativi	.80
5	Messa in servizio	.81
5.1	Messa in servizio Rapida del Regolatore	.81
5.1.1	Controllo del Display	.81
5.2	Verifica dell'installazione	.81
5.3	Configurazione del regolatore	.81
5.4	Verifica dei dispositivi periferici	.86
5.5	Funzionamento della regolazione	.88
5.6	Taratura della regolazione di surriscaldamento.	.89
6	Controllo capacità frigorifera	.91
6.1	Generalità	.91
6.2	Principio di funzionamento	.91
6.3	Applicazioni	.92
6.3.1	Controllo della capacità esterno (EXT.)	.92
6.3.2	Controllo di capacità interno (INT.)	.93
6.4	Messa in servizio e ottimizzazione della	
	regolazione di capacità	.94
7	Risoluzione dei problemi	.95
8	Panoramica riassuntiva delle maschere del display	96

1 Introduzione

Questo manuale contiene tutte le informazioni necessarie per l'installazione, l'utilizzo e la verifica di funzionamento del regolatore del Surriscaldamento PolyCool™. Tutte le impostazioni utente possono essere eseguite direttamente sul regolatore senza l'utilizzo di software addizionali.

2 Descrizione delle funzioni

Le seguenti funzioni permettono al regolatore Surriscaldamento PolyCool™ un funzionamento ottimale dell'evaporatore:

- Controllo del surriscaldamento
- Controllo minimo del surriscaldamento
- Funzione MOP (massima pressione di funzionamento)
- Controllo dei sensori di temperatura e pressione
 - ⇒ Contatto di allarme: La funzione di controllo può, in funzione del collegamento, attivare una sirena o integrarsi nel circuito di sicurezza del compressore.
- Funzioni di manutenzione (apertura manuale della valvola)

In opzione, è possibile configurare il regolatore come controllo della capacità (vedi capitolo 6)

3 Componenti del sistema

Il Kit Surriscaldamento PolyCool™ contiene i seguenti componenti:

- Regolatore: RWR462.10
- Valvola di espansione elettronica: MVL661...-...
- Sensore di pressione: QBE9101-P10U con segnale d'uscita 4...20 mA
- Sensore di temperatura: QAZ21.682/101, -50...80 °C / -58...176 °F

L'alimentazione richiesta da queste apparecchiature è di AC / DC 24 V.

Per AC 24 V raccomandiamo un trasformatore isolato con almeno 25 VA.

3.1 Installazione e Montaggio

Regolatore

A Installazione su guida DIN

Non sono necessari ulteriori accessori.

B Installazione a muro

Con 4 viti per foro del diametro di: 4 mm x 6 mm

C Installazione fronte quadro con mascherina

Con Kit di montaggio HVAC Products ARG62.10 Istruzioni di montaggio M 3351.1

Valvola ad espansione elettronica (EIV)

Test di laboratorio hanno rivelato che la regolazione migliora quando la valvola è installata più in alto dell'evaporatore (minimo 5 cm).Questo è particolarmente importante con gli scambiatori a piastre.

- Prima di installare la valvola controllare attentamente la direzione del flusso.
- Prima di installare la valvola controllare attentamente che all'interno delle tubazioni non ci siano della impurità come ad esempio della limatura di rame.
- Il corpo valvola deve essere raffreddato con uno straccio bagnato durante la saldatura.
- Installare un filtro a monte della valvola
- I tubi di collegamento devono essere fissati in modo da evitare qualsiasi tipo di sforzo meccanico sulle connessioni della valvola, poiché le vibrazioni possono causare la rottura delle tubazioni.
- Con temperatura di evaporazione inferiore allo 0 °C la valvola, il convertitore di segnale e le connessioni devono essere isolate.
- Con temperatura di evaporazione superiore allo 0 °C solamente il corpo valvola e le connessioni devono essere isolate (vedi figura)

Sensore di pressione

- Il sensore di pressione deve essere montato dritto nella parte superiore della tubazione.
- Il sensore di pressione può essere montato direttamente sulla tubazione di aspirazione.

Sensore di temperatura

- Deve essere fissato con una fascetta
- Deve essere adeguatamente isolato

Nota

Il miglior funzionamento è ottenibile posizionando il sensore di temperatura entro 2 m dall'uscita dell'evaporatore, aumentando tale distanza occorre aumentare, in modo proporzionale alla distanza stessa, il set-point del surriscaldamento.

3.2 Collegamenti Elettrici

Le apparecchiature devono essere collegate secondo il seguente schema elettrico:

Dis	positivi	Assegnazio	ne degli ingressi/uscite
X1	Sensore di pressione QBE9101-P10U	X1, 24 VDC	Pressione d'evaporazione
X2	Sensore di temperatura QAZ21.682/101	X2, GND	Temperatura del gas d'aspirazione
X4	Solo se il controllo di capacità è configurato:	Х3	Segnale di feedback EIV
	- Sensore attivo di temperatura	X4, GND	Solo se il controllo di capacità è
	- Trasmettitore di segnale		configurato:
	DC 010 V / 420 mA *		- Segnale esterno DC 010 V / 420 mA
			- Temperatura del medio (sensore attivo)
X5	Sensore di temp. QAZ21.682/101	X5, GND	Solo se il controllo di capacità è
	(richiesto solo per controllo di capacità		configurato:
	interno)		- Temp. del medio (sensore passivo)
K1	Abilitazione	D1, M	Abilitazione
M1	Compressore	Q13, Q14	Compressore
N1	Regolatore RWR462.10	G, G0	Alimentazione AC / DC 24 V
Y1	Valvola espansione elettronica (EIV)	Y1	Segnale di posizionamento EIV
	MVL661		(DC 010 V)

* Campo d'impiego: -0.5...10.5 V / 3.5...20.5 mA.

Al di fuori della zona d'impiego il regolatore andrà in blocco.

4 Regolatore 4.1 Funzionamento

Per operare sul regolatore, utilizzare i tasti posti sul pannello frontale.

- Premere il pulsante <OK> per abilitare le modifiche, o confermare una modifica di parametro.
- Premere il pulsante +/- per cambiare il dato lampeggiante change the flashing data, o selezionare l'iformazione sullo schermo.
- Premere il pulsante <ESC> per uscire dal livello corrente e tornare al livello precedente.

Un'informazione lampeggiante indica parametro modificabile.

4.2 Modi operativi

Le funzioni del regolatore sono suddivise in quattro modi operativi: controllo, configurazione, parametri e simulazione.

E' possibile attivare il modo operativo desiderato tenendo premuto simultaneamente i tasti +/- e tenendoli premuti per almeno 5 secondi. Rilasciare i pulsanti quando C1 lampeggia.

Segui le procedure qui sotto per accedere ai modi operativi in modo appropriato.

Modi operativi	Procedure	
	Quando C1 lampeggia premere OK per	
	confermare.	
Modo configurazione	Selezionare il modo con +/- e premere	
Mada Paramatri	OK per confermare,	
	o premere <esc> per uscire dal livello</esc>	
Modo simulazione	operativo corrente.	

Dopo il settaggio dei parametri necessari, il regolatore mostrerà di default le condizioni operative in regolazione di setpoint ,valore corrente di surriscaldamento, e lo stato istantaneo di apertura della valvola.

5 Messa in servizio

5.1 Messa in servizio Rapida del Regolatore

Il regolatore di Surriscaldamento è di base "plug & play", e solo il refrigerante deve essere selezionato.

Procedure	Descrizione
Step 1	Tutti I dispositivi periferici sono sconnessi
Step 2	Collegare l'alimentazione al regolatore
Step 3	Selezionare il refrigerante

5.1.1 Controllo del Display

Dopo l'accensione, lo schermo LCD del regolatore mostrerà e proverà tutti I segmenti (Figura 1).

Per aiutare L' utilizzatore ad una migliore comprensione del manuale, tutte le figure operativie sono state numerate nella stessa sequenza in cui appaiono. Vedi anche «Panoramica riassuntiva delle maschere del display», Capitolo 8.

5.2 Verifica dell'installazione

Prima di collegare l'alimentazione, controllate ed assicuratevi che tutti i componenti del sistema siano installati e collegati secondo le indicazioni della sezione 3.1 e 3.2.

5.3 Configurazione del regolatore

Dopo la prima accensione , il regolatore si posiziona automaticamente nel modo configurazione. Una volta impostato il tipo di refrigerante il regolatore si posiziona immediatamente nel modo controllo, subito dopo l'accensione. Dalla seconda e successiva accensione è possibile attivare il modo configurazione premendo simultaneamente i tasti +/- mantenendoli premuti per almeno 5 secondi.

Se i parametri, in modo configurazione, vengono cambiati durante il normale funzionamento (ad eccezione delle unità di misura), l'uscita Y1 del regolatore viene forzata a 0 V. In questo caso, la forzatura potrà essere eliminata solo dopo aver confermato tutti i successivi parametri con il tasto <ESC> sulla destra (il regolatore deve essere portato in modo Regolazione).

81/124

Note

Modo Configurazione / CONF

(Continua con <OK> / figura 3)

In questo modo, inserite il refrigerante usato nell'impianto. Successivamente si possono sciegliere le unità di misura di pressione,temperatura ed EIV. Potete sciegliere inoltre fra diversi tipi di sensori di pressione secondo le esigenze dell'applicazione.

Un errore di scelta del refrigerante può dannaggiare l'impianto!

In opzione, è possibile configurare il controllo di capacità (vedi capitolo 6). Il regolatore viene consegnato di default con il controllo di capacità disattivo.

Figura	Funzione	Parametro	Codice	Campo variabile/incremento	Taratura Default	Procedura
4	REFRIG	Tipo di refrigerante	REFRIG	R22, R23, R134a, R152a, R170, R290, R401a, R401b, R401c, R402a, R402b, R404a, R406a, R407a, R407b, R407c, R408a, R409a, R410a, R410b, R417a, R502, R507, R600, R600a, R717, R723, R744, R1270	NA	Modifica con +/- Conferma con <ok> Esci con <esc></esc></ok>
5		Abil/disabil	COMP	ON (per C1)	ON	
	,	e seganle feedback EIV	Fb ³⁾	ON/OFF	OFF	
6	CAP ⁴⁾	Applicazione	-	NO = solo surriscaldamento (Applicazione 1) EXT = controllo capacità esterno (Applicazione 2) INT = controllo capacità interno (Applicazione 3)	NŌ	
7	SENSOR	Sensore 1	X1	QBE9101-P10U con uscita 420 mA	-	
		Sensore 2	X2	Ni1000	Ni1000	
		Sensore 3	X3	010 V, 420 mA	010 V	
		Sensore 4 ⁵⁾	X4	Per controllo capacità interno configurato: NO, 010 V, 420 mA Per controllo capacità esterno configurato: 010 V, 420 mA	-	
		Sensore 5 ⁵⁾	X5	Ni1000	Ni1000	

8	RANGE 6)	X4	LO	-9090 °C / 0.1 °C	-35.0°C/
				-130194 °F / 0.1 °F	-31.0°F
			HI	-9090 °C / 0.1 °C	+35.0°C/
				-130194 °F / 0.1 °F	+95.0°F
9	UNITS	Temperatura	Т	°C(K),°F	°C(K)
		Pressione	Р	Bar, Psi	Bar
		Apertura EIV	EIV	V, %	%

- ¹⁾ R290 e R1270 possono essere usati per valvole a prova di esplosione. R717 richiede valvole studiate per ammoniaca!
- ²⁾ Il circuito di default è C1 ed il compressore di C1 non può essere disabilitato.
- ³⁾ Se la differenza fra l'apertura della valvola (segnale di feedback EIV, X3) ed il valore di aperture della stessa (segnale di posizionamento EIV), Y1) è oltre il 10 %, il simbolo EIV sullo schermo lampeggierà in modo continuo.
- ⁴⁾ CAP sarà mostrato in modo regolazione solo se il controllo capacità è stato configurato.
- ⁵⁾ La selezione fra gl'ingressi X4 e X5 varia con l'applicazione che avete configurato. Configurando il valore di X4 come NO significa che sarà usato sensore X5.
- ⁶⁾ Il campo limite (RANGE) può essere configurato solo se sono stati selezionati controllo capacità interno (Applicazione 4) e X4.

Modo Parametri / PARA

(Continua con<OK> / figura 10)

In questo modo, si può inserire il setpoint del surriscaldamento, oltre ai parametri di controllo del surriscaldamento, la funzione MOP, il controllo di capacità (se configurato) ed i parametri di sicurezza (se configurato). Il controllo di surriscaldamento è gestito con una regolazione PID. Sia la funzione MOP che il controllo di capacità sono gestiti da algoritmi PI.

Figura	Funzione	Parametro	Codice	Campo variabile/incremento	Taratura Default	Procedura
11	ΔT	Setpoint	SP	016 K / 0.1 K 028.8 °F / 0.1 °F	6.0 K / 10.8 °F	Scegli il parametro /
		Banda proporzionale	XP	2160 K / 1 K 3288 °F / 1 °F	10 K / 18 °F	valore con +/-
		Tempo integrale	TN	0600 s / 1 s	30 s	
		Tempo derivativo	D	05 / 1	0	Conferma
12	CAP ¹⁾	Max. incremento ∆T SP	SMX Vedi Esem. pag. 91	050 K / 0.1 K 090 °F / 0.1 °F	18.0 K / 32.4 °F	con <ok></ok>
		Direzione del seganle esterno	SD ²⁾	-1 (0 V / 4 mA= max. cooling cap.) 1 (0 V / 4 mA= min. cooling cap.)	1	Esci con <esc></esc>
		Setpoint	SP	-4590 °C / 0.1 °C -49194 °F / 0.1 °F	6.0 °C / 42.8 °F	
		Banda proporzionale	XP	2160 K / 1 K 3288 °F / 1 °F	35 K / 63 °F	
		Tempo integrale	TN	0600 s / 1 s	95 s	
13	MOP	Setpoint	SP	-4535 °C / 0.1 °C -4995 °F / 0.1 °F	15.0 °C / 59.0 °F	
		Banda proporzionale	XP	2160 K / 1 K 3288 °F / 1 °F	5 K / 9 °F	
		Tempo integrale	TN	0600 s / 1 s	30 s	
14	SAFETY 3)	Tempo di ritardo in partenza della EIV	VD	030 s / 1 s	0 s	
		Limite di apertura della valvola in partenza	VO	050 % / 1 %	0 %	

Ritardo d'allarme sensore di pressione quando il comp. è ON	PA	030 s / 1 s	5 s	
Limite inferiore di misura della temperatura	TL ⁴⁾	-5040 °C / 1 °C -5840 °F / 1°F	-40 °C / 1 °C -40 °F / 1 °F	
Surriscaldamento minimo ΔT	MI	04 K / 07.2 °F	2 K / 3.6°F	

- 1) Può essere parametrizzato solo se il controllo di capacità interno è stato selezionato nel modo configurazione.
- 2) SD può essere parametrizzato solo se il controllo di capacità esterno è stato selezionato nel modo configurazione. SD = -1 significa che 0 V / 4 mA corrisponde ad un max. di capacità di refrigerazione.

SD = 1 significa che 0 V / 4 mA corrisponde a min. capacità di refrigerazione.

3) Operazione controllo sicurezza

- 4) Qundo la temperatura istantanea supera questo limete TL, viene segnalato un allarme.
- Osservazione La funzione MOP può essere tarata usando i parametri. Normalmente, i parametri di fabbrica non necessitano di modifica.

5.4 Verifica dei dispositivi periferici

Il test dei dispositivi periferici può essere eseguito come segue:

Sensori di temperature e pressione

I due sensori funzionano correttamente se, in modo regolazione, il valore di misura mostrato della tempratura di evaporazione TO e la temperature d'aspirazione TOH sono realistici (misure di riferimento). Se il controllo di capacità interno è configurato, bisogna provare anche il sensore di temperatura del medio. Per i guasti potenziali, fare riferimento al capitolo 7.

Valvola d'epansione elettronica.

Nel modo simulazione è possible pretarare un minimo grado d'apertura (MAIN EIV) per la Valvola d'epansione elettronica. Allo stesso modo, è possible verificare se la posizione instantanea della valvola (EIV) corrisponde alla pretaratura manuale effettuata (MAN EIV).

Nota È possible notare una piccola differenza fra il segnale di posizionamento e quello di ritorno dalla valvola, ma la differenza non dovrebbe essere molto differente lungo tutta la corsa della valvola.

Modo Simulazione /SIMU

(Continua con <OK> / figura 15)

Figura	Funzione	Parametro	Codice	Campo variabile/incremento	Taratura di fabbrica	Procedura
16	Grado d'apertura EIV Azionata manualmente	Setpoint * DC 010 V segnale	MAN EIV	010 V / 0.1 V	0.0 V	Modifica parametri / valori con +/-
17	Posizione istantanea EIV rispetto all'apertura manuale	DC 010 V segnale 0100 % apertura	MAN EIV EIV	-	-	Conferma con <ok> Passare al</ok>
18	Valore istantaneo a display	Temperatura d'evaporaz. Temperatura Gas aspiraz.	то тон		-	modo regolazione con <esc></esc>
		Premi cont	inuamen	te <esc> per uscire</esc>		

* Attenzione! A vostro Rischio!

- Nel modo simulazione, le funzioni di monitoraggio sono disattivate se non abilitate via D1, perciò, il vostro impianto può danneggiarsi seriamente.
- Nel modo simulazione, le funzioni di monitoraggio possono essere disattivate volutamente (attraverso D1). Questo permette di operare manualmente sull'impianto per 15 minuti.

5.5 Funzionamento della regolazione.

Durante il funzionamento della regolazione, il modo regolazione è abilitato. In questa modalità,tutti gli ingressi e le uscite vengono mostrati a display.

Modo Regolazione

Figura	Parametri e codici	Posizione	Procedure
19	Valore istantaneo surriscaldam.	Linea 1	Premi +/- per
	Setpoint surriscaldamento (ΔT SP)	Linea 2	navigare
	Aperture istantanea EIV (EIV)	Linea 3	nella
19a ¹⁾	Segnale ritorno da EIV (Fb)	Linea 1	schermata
	Aperture calcolata EIV	Linea 2	desiderata
	Aperture istantanea EIV (EIV)	Linea 3	
20	(Libero)	Linea 1	
	Temper. D'evaporazione (TO)	Linea 2	
	Pressione d'evaporazione (PO)	Linea 3	
21	(libero)	Linea 1	
	Temper. D'evaporazione (TO)	Linea 2	
	Temper. Gas aspirazione (TOH)	Linea 3	
21a ²⁾	EXT (segnale esterno)	Linea 1	
	Segnale esterno istantaneo	Linea 2	
	(libero)	Linea 3	
21b ³⁾	Temper. Attuale del madio (TM)	Linea 1	
	Setpoint del medio (CAP SP)	Linea 2	
	(libero)		
22	Il refrigerante selezionato (R…)	Linea 1	
	(libero)	Linea 2	
	(libero)	Linea 3	

¹⁾ Se il segnale di feedback (Fb) è disabilitato, la figura 19a non sarà mostrata.

- ²⁾ La figura 21a sarà mostrata per il controllo di capacità esterno configurato.
- ³⁾ La figura 21b sarà mostrata per controllo di capacità interno configurato.

5.6 Taratura della regolazione di surriscaldamento.

Se tutti I collegamenti e tutte le periferiche sono Okay, l'impianto può essere avviato. I parametri di default per controllo di surriscaldamento (XP, TN and D) può essere ottimizzato nel modo seguente:

- a) Dopo l'avvio dell'impianto, attendere sino a quando le condizioni di stabilità sono state raggiunte; questo richiede solitamente fra 2 e 5 minuti. La figura qui sopra mostra il grafico possibile del surriscaldamento durante una condizione transiente di partenza.
- b) Determinare la massima differenza (MA) tra il setpoint SP e il surriscaldamento misurato ΔT
- c) Aumentare (es. raddoppiare) la banda proporzionale XP o diminuirla (es. dimezzare).
- d) Dopo aver cambiato la banda proporzionale XP, attendere i due cicli e quindi rideterminare la deviazione (differenza MA). Le variazione della Deviazione in MA determinano i futuri cambiamenti. Consultare la tabella sotto riportata.
- e) Una volta determinato il valore ottimale della banda proporzionale, difficilmente si renderanno necessarie ulteriori modifiche.
- Ripetere i passi da c) a e) con il tempo integrale TN al posto della banda proporzionale XP.
- g) Ripetere i passi da c) a e) con il tempo derivativo D al posto della banda proporzionale XP.

	MA diminuisce	MA aumenta
XP è incrementato	Incrementare nuovamente XP e proseguire con la fase d) finché MA comincerà ad aumentare. Quindi riportare XP al valore in corrispondenza del quale MA raggiungeva il proprio minimo (valore ottimale).	Riportare XP al valore originario e quindi ridurlo. Proseguire con la fase d).
XP è ridotto	Ridurre nuovamente XP e proseguire con la fase d) finché MA comincerà ad aumentare. Quindi riportare XP al valore in corrispondenza del quale MA raggiungeva il proprio minimo (valore ottimale).	Riportare XP al valore originario e quindi aumentarlo. Proseguire con la fase d).

6 Controllo capacità frigorifera

6.1 Generalità

La capacità frigorifera diminuisce con l'aumentare del surriscaldamento.

Questo effetto viene utilizzato dal PolyCool per il controllo della capacità frigorifera.

6.2 Principio di funzionamento

Il controllo della capacità frigorifera varia continuamente il set-point del surriscaldamento in un determinato intervallo di valori.

Questa variazione e' proporzionale ad un segnale esterno 0-10 V DC oppure alla variabile di controllo di capacità calcolata internamente. DC 0 V / 4 mA DC corrispondono al set-point del surriscaldamento (Δ T SP), e DC 10 V / 20 mA corrispondono alla somma (Δ T SP+SMX). Entrambi i parametri possono essere inseriti nel modo parametri. Impostando un grande valore di SMX, si ottiene una grande riduzione della capacità frigorifera. Con la riduzione della capacità frigorifera si verifica una riduzione della pressione e della temperatura di evaporazione. Ad esempio, con l'aumento di un grado del surriscaldamento si verifica:

SMX	 Una riduzione della temperatura di evaporazione di 1 °C Una riduzione della capacità frigorifera Q₀ del 3.1 %
Esempio	Richiesta è una riduzione della capacità frigorifica del 50 %, cioè. 50 % / 3.1 ≅ 16 K per SMX
	Per assicurare il raffreddamento e la lubrificazione del compressore la variazione del surriscaldamento non deve superare certi limiti. In merito alla minima pressione di aspirazione verificare le specifiche tecniche del compressore.
	Riducendo eccessivamente la capacità frigorifera si potrebbero verificare formazioni di ghiaccio sulle batterie ad aria. La riduzione di temperatura di evaporazione deve essere tenuta sotto controllo anche nei refrigeratori ad acqua senza

6.3 Applicazioni

PolyCool™ Surriscaldamento può essere utilizzato in tre differenti applicazioni:

La prima applicazione e' rappresentata dal semplice controllo del surriscaldamento (impostazione di fabbrica) ed e' stata illustrata nel precedente capitolo. Le altre due applicazioni sono le seguenti:

6.3.1 Controllo della capacità esterno (EXT.)

L'ingresso X4 può essere utilizzato direttamente per cambiare il set-point, entro i limiti specificai nel modo parametri SMX, applicando un segnale esterno DC 0...10 V / 4...20 mA. Normalmente questo segnale proviene da un regolatore esterno (Synco, Saphir, altro) che ha il compito di mantenere costante la temperatura dell'acqua refrigerata. Questo regolatore esterno misura la temperatura dell'acqua o dell'aria ed in funzione del relativo set-point provvede, attraverso un segnale DC 0...10 V / 4...20 mA, a richiedere al PolyCool la relativa riduzione di capacità.

Modo operativo

10 V / 20 mA \cong min. Q₀ 0 V / 4 mA \cong max. Q₀ (100 %) Quando SD=1 (vedi pag. 84, figura 12)

6.3.2 Controllo di capacità interno (INT.)

L'ingresso X4 può anche essere utilizzato per acquisire direttamente la temperatura TM dell'acqua o dell'aria con una sonda attiva (DC 0...10 V / 4...20 mA), oppure si può ottenere la stessa applicazione collegando una sonda passiva (Ni1000) all'ingresso X5.

Questo ingresso può essere correttamente configurato, nel modo configurazione (figura 6 e 7).

Il valore istantaneo del fluido viene confrontato con il setpoint CAP SP, ed il regolatore provvede alla relativa variazione del set-point del surriscaldamento. I parametri di regolazione possono essere inseriti nel modo parametri.

6.4 Messa in servizio e ottimizzazione della regolazione di capacità.

Per la messa in servizio del regolatore vedi il capitolo 5. Quando possibile è buona norma iniziare la messa in funzione dal semplice controllo del surriscaldamento.

Dopo aver ottimizzato i parametri di controllo come descritto al paragrafo 5.5, dovete configurare e parametrizzare il controllo di capacità.

Inizialmente i parametri (XP, TN) relativi alla regolazione di capacità devono essere ottimizzati secondo quanto indicato alla sezione 5.5. Questi parametri devono essere selezionati tenendo in considerazione che devono essere maggiori di quelli del controllo del surriscaldamento.

7 Risoluzione dei problemi

Quando un guasto viene riscontrato, l'icona 鏠 lampeggierà e il display LCD mostrerà ERR (o FAIL) con il parametro corrispondente.

Componente	Difetto	Possibile causa / rimedio
Sensore passivo di temperatura	Valore misurato lampeggiante Display: FAIL	Collegamento del sensore aperto o sensore non connesso
Ni1000	Valore misurato lampeggiante Display: ERR / LO	Valore misurato ≤ TL
	Valore misurato lampeggiante Display: ERR / HI	Valore misurato ≥ 80 °C
Sensore attivo di temperatura o altro trasmettitore DC 010 V / 420 mA (Synco, Saphir	Valore misurato lampeggiante Display: ERR / LO	Valore misurato \leq -0.5 V or 3.5 mA (in controllo capacità esterno) Valore misurato \leq 0 V or 4 mA (in controllo capacità interno con sensore temperature attivo)
e/o altro)	Valore misurato lampeggiante Display: ERR / HI	Valore misurato ≥ 10.5 V or 20.5 mA (in controllo capacità esterno) Valore misurato ≥ 10 V or 20 mA (in controllo capacità interno con sensore temperature attivo)
Sensore di pressione	Valore misurato lampeggiante Display: ERR / HI	Valore misurato ≤ 4 mA
	Valore misurato lampeggiante Display: ERR / HI	Valore misurato ≥ 20 mA
Valvola espansione elettronica	Nessun segnale di ritorno segnale = 0 V	Collegamento aperto o non connesso
(FIV)	La valvola non apre	Connessione cavo mancante
		Nel modo simulazione la valvola può essere testata manualmente inserendo la % di apertura e confrontando il relativo segnale di feeback
		Valvola guasta
	La posizione di feedback non corrisponde con il grado di apertura manuale	Collegamento del segnale di feedback non connesso Circuito aperto o valvola guasta
	Formazione di ghiaccio a valvola chiusa	Valvola difettosa / Calibrazione valvola non corretta / Valvola non chiude completamente: possibilità di impurità nella valvola
Regolatore	Display spento	Verificare l'alimentazione (AC/DC 24 V)
	Variabile calcolata internamente sempre a 0 V (Y1)	Corto circuito/circuito aperto Mancanza abilitazione via D1 * Regolatore guasto
	Formazione di ghiaccio sull'evaporatore senza	Uscita Y1 non a 0 V \Rightarrow Regolatore guasto
	abilitazione di D1	Disturbi esterni sulla linea del segnale della valvola

 * Per ogni guasto relativo al segnale di abilitazione D1, l'icona compressore lampeggerà simultaneamente.

8 Panoramica riassuntiva delle maschere del display

Per i valori e relativi incrementi vedi capitolo 5.

Maschera	Valore visualizzato	Procedura			
1	Segementi del Display in prova per 5 s				
2	Selezione del circuito	Premere contemporaneamente +/- per almeno 5 secondi. Selezione con +/- premi <ok> per conferma.</ok>			
	Dopo aver selezionato il circuito, seleziona	te il modo seguente con +/- e			
2	CONE MODE (mode configurazione)	Promi COK> por conformaro o			
3		procedere			
4	REFRIG (selezione del refrigerante)				
5	ENABLE (abilita/disabilita il compressore e il segnale di ritorno dalla EIV)	In figura 3 seleziona con +/-			
6	CAP	Continua/conferma con <ok></ok>			
7	SENSOR	Esci con <esc></esc>			
8	RANGE (campo di misura di X4)				
9	UNITS				
	Premi continuamente <esc> e torna alla fi</esc>	gura 3			
10	PARA MODE (modo parametri)	Premi <ok> per confermare e</ok>			
		procedere			
11	ΔΤ	Premi <ok> per confermare e</ok>			
	AT SD (actnoint aurriagaldamenta)	procedere			
	(6.0 K / 10.8 °F default)				
	ΔT XP (banda proporzionale				
	surriscaldamento)				
	(10 K / 18 °F default)	In figura 11, modifica con +/-			
	ΔT TN (tempo integrale	Continua/conferma con <ok></ok>			
	surriscaldamento)	Esci con <esc></esc>			
	(30 s default)				
	ΔT D (Derivativo per				
	surriscaldamento)				
	(U default)	10			
	Premi continuamente <esc> e torna alla fi</esc>	gura 10			
12	САР	Premi <ok> per confermare e procedere</ok>			
	CAP SMX (max. setpoint incremento)				
	(18.0 K / 32.4 °F default)				
	CAP SD (direzione del segnale esterno)				
	(SD=1 indica che 0 V / 4 mA corrisponde				
	ai min. capacita di raffreddamento)	In figura 12, modifica con +/-			
	(6 0 °C / 42 8 °E default)	Conunua/conterma con <ok></ok>			
	CAP XP (banda proporzionalo)				
	(35 K / 63 °E default)				
	CAP TN (tempo integrale)	1			
	(5 s default)				
1	Premere continuamente <esc> per tornare alla figura 12</esc>				

Maschera	Valor	e visualizzato	Procedura	
13	MOP		Premi <ok> per confermare e procedere</ok>	
	MOP	SP (Setpoint del MOP) (15 °C / 59 °F default)	In figura 13, modifica con +/-	
	MOP	XP (banda proporzionale di MOP) (5 K / 9 °F default)	Continua/conferma con <ok></ok>	
	MOP	TN (tempo intergrale di MOP) (30 s default)		
	Prem	ere continuamente <esc> per tornare a f</esc>	igura 13	
14	SAFT	Y (controllo di sicirezza)	Premi <ok> per confermare e procedere</ok>	
	VD	(Tempo di ritardo avviamento della valvola) (0 default)		
	VO	(limite apertura avviamento valvola) (0 default)		
	PA	(ritardo d'allarme sensore di pressione quando il compressore è ON) (5 s default)	In figura 15, modifica con +/- Continua/conferma con <ok> Esci con<esc></esc></ok>	
	TL	(limite inferiore per la misiura di temperatura) (-40 °C / -40 °F default)		
	MI	(Min.surriscaldamento ΔT) (2 K / 3.6 °F default)		
	Prem	ere continuamente <esc> per tornare a f</esc>	igura 14	
15	SIMU	MODE (modo simulazione)	Premi <ok> per confermare e procedere</ok>	
16	MAN mezz Atten Può (EIV (apertura manuale della valvola per o del segnale interno DC 010 VI) izione! A vostro rischio!! causare seri Danni al compressore!	In figura 15, premi <ok> Esci con <esc></esc></ok>	
17	EIV	(posizione atttuale della EIV relativa al posizionemento manuale MAN EIV)	In figura 16, premi ancora <ok></ok>	
18	то тон	(valore istantaneo della temperature d'evaporazione) (valore istantaneo della temperature del	In figura 17, modifica con +/-	
		gas in aspirazione)		
	Prem	ere continuamente <esc> per tornare a f</esc>	igura 15	

es Índice

1	Introducción100
2	Descripción funcional100
3	Componentes del sistema100
3.1	Montaje e instalación101
3.2	Cableado de los dispositivos periféricos103
4	Controlador104
4.1	Funcionamiento104
4.2	Modos de funcionamiento104
5	Puesta en servicio105
5.1	Puesta en servicio rápida del controlador105
5.1.1	Comprobación de la pantalla105
5.2	Comprobación de la instalación105
5.3	Configuración del controlador105
5.4	Comprobación de los dispositivos periféricos110
5.5	Manejo de la regulación112
5.6	Ajuste del controlador de recalentamiento113
6	Control de la capacidad de refrigeración115
6.1	Información general115
6.2	Principio de funcionamiento115
6.3	Aplicación116
6.3.1	Control de capacidad externo (EXT.)116
6.3.2	Control de capacidad interno (INT.)117
6.4	Puesta en servicio y optimización del controlador
	de capacidad118
7	Corrección de errores119
8	Breve descripción de las imágenes mostradas en la pantalla121

1 Introducción

Este manual contiene toda la información necesaria para la instalación, utilización y puesta en servicio de PolyCool™ Superheat. La configuración requerida por cada usuario se puede definir directamente en el dispositivo, sin necesidad de emplear herramientas adicionales.

2 Descripción funcional

Las siguientes funciones posibilitan un llenado óptimo del evaporador mediante el empleo de PolyCool™ Superheat:

- Control del recalentamiento
- Control del recalentamiento mínimo
- Función de presión máxima de funcionamiento (MOP por sus siglas en inglés)
- Control de los sensores de presión y temperatura
 - Contacto de alarma: en función del cableado, la función de control puede activar una alarma acústica o integrarse en la cadena de seguridad del compresor.
- Función de mantenimiento (apertura manual de la válvula)

También es posible configurar opcionalmente el control de la capacidad de refrigeración (véase el capítulo 6).

3 Componentes del sistema

PolyCool[™] Superheat incluye los siguientes componentes:

- Controlador: RWR462.10
- Válvula de inyección electrónica: MVL661...-...
- Sensor de presión: QBE9101-P10U con señal de salida de 4...20 mA
- Sensor de temperatura: QAZ21.682/101, -50...80 °C / -58...176 °F

Estos dispositivos requieren una tensión de alimentación de 24 V CA / CC.

Para AC 24 V (24 V CA), recomendamos un transformador de aislamiento de al menos 25 VA.

3.1 Montaje e instalación

Controlador

A Montaje en rail DIN

No se requieren piezas adicionales.

B Montaje en pared

Se requieren cuatro tornillos para orificios elípticos con un diámetro de 4 mm x 6 mm

C Montaje empotrado en panel

Se puede realizar con el kit de montaje HVAC Products ARG462.10

Instrucciones de montaje M 3351.1

Válvula de inyección electrónica (VIE)

Los ensayos de laboratorio ponen de manifiesto que el rendimiento del control aumenta si la válvula se instala por encima del evaporador (al menos 5 cm). Esto resulta especialmente importante en el caso de los intercambiadores de calor de placas.

- Antes de soldar la válvula a la tubería, es necesario comprobar detenidamente la dirección del flujo.
- Asegúrese de retirar los materiales de soldadura, limaduras de cobre, etc. de la tubería.
- Durante la soldadura, se debe enfriar el cuerpo de la válvula con un trapo frío.
- Monte un filtro por encima de la válvula.
- La tubería se debe fijar de forma que los soportes de las conexiones de la válvula no estén sometidos a cargas mecánicas. Las vibraciones podrían romper la tubería.
- Con temperaturas del evaporador inferior a 0 °C, se debe configurar toda la válvula (excepto en mando manual) y sus tuberías.
- Con temperaturas superiores a 0 °C, sólo deben calorifugarse el cuerpo de válvula (ni el actuador ni el convertidor) y sus tuberías (ver figura).

Sensor de presión

- El sensor de presión se debe montar en posición vertical sobre la tubería.
- Se puede montar directamente sobre la tubería de aspiración.

Sensor de temperatura

- Se debe montar lo más cerca posible de la salida del evaporador (a una distancia máxima de 2 m / 6,5 pies) en una sección recta de la tubería o inmediatamente después de un codo y en la parte exterior del mismo.
- Fíjelo con un sujetacables.
- Aíslelo.

Nota

Cuanto más alejado esté el sensor del evaporador, mayor es la estabilidad del control (máximo 2 m). Se recomienda aumentar proporcionalmente el valor de referencia del recalentamiento.

3.2 Cableado de los dispositivos periféricos

El cableado de los dispositivos periféricos se debe llevar a cabo según el siguiente esquema de instalación:

Dispositivos		Asignación de bornes	
X1	Sensor de presión QBE9101-P10U	X1, 24 VDC	Presión de evaporación
X2	Sensor de temperatura QAZ21.682/101	X2, GND	Temperatura del gas de aspiración
X4	Sólo si se configura el control de	X3	Señal de realimentación de posición de
	capacidad:		la VIE
	- Sensor de temperatura activo	X4, GND	Si se configura el control de capacidad:
	- Transmisor de señal de		- Señal externa de 010 V / 420 mA CC
	010 V / 420 mA CC *		- Temperatura del medio (sensor activo)
X5	Sensor de temperatura QAZ21.682/101	X5, GND	Si se configura el control de capacidad
	(sólo es necesario para el control de		interno:
	capacidad interno)		- Temperatura del medio (sensor pasivo)
K1	Activación	D1, M	Activación
M1	Compresor	Q13, Q14	Compresor
N1	Controlador RWR462.10	G, G0	Alimentación AC / DC 24 V (24 V CA / CC)
Y1	Válvula de inyección electrónica (VIE)	Y1	Señal de posicionamiento de la VIE
	MVL661		(010 V CC)

* El intervalo útil es de -0,5...10,5 V / 3,5...20,5 mA. Fuera de este intervalo, el controlador se bloquea.

4 Controlador4.1 Funcionamiento

Para manejar el controlador, use los botones de mando de la parte delantera del controlador.

- Pulse el botón <OK> para activar los cambios o para confirmar un cambio.
- Pulse los botones +/- para modificar los valores que parpadean o para seleccionar la pantalla de información.
- Pulse el botón <ESC> para salir del nivel en que se encuentra o regresar al nivel anterior.

Si los valores visualizados parpadean, se trata de valores regulables.

4.2 Modos de funcionamiento

Las funciones del controlador se agrupan en cuatro modos de funcionamiento: regulación, configuración, parametrización y simulación.

Para activar cualquiera de los modos, pulse simultáneamente los botones +/- y manténgalos pulsados durante al menos cinco segundos. Pulse los botones hasta que el C1 comience a parpadear.

Siga los procedimientos indicados a continuación para acceder a los distintos modos de funcionamiento.

Modos de funcionamiento	Procedimientos	
	Cuando el C1 parpadee, pulse el botón <ok> para confirmar.</ok>	
Modo de configuración	Seleccione el modo de funcionamiento con los botones +/- y pulse <ok> para</ok>	
Modo parametrización	confirmar. Pulse <esc> para salir del nivel de funcionamiento en el que se encuentra.</esc>	
Modo de simulación		

Tras configurar todos los parámetros necesarios, el controlador estará, por defecto, en el modo de regulación y mostrará el valor de referencia del recalentamiento, el valor actual del recalentamiento y la apertura real de la válvula.

5 Puesta en servicio 5.1 Puesta en servicio rápida del controlador

El controlador es básicamente un dispositivo "plug & play", en el que únicamente es necesario seleccionar el refrigerante.

Procedimientos	Descripción
Paso 1	Conecte todos los dispositivos periféricos.
Paso 2	Conecte el controlador a la corriente eléctrica.
Paso 3	Seleccione el refrigerante.

5.1.1 Comprobación de la pantalla

Tras encender el controlador, la pantalla LCD mostrará y comprobará todos los segmentos (imagen 1).

Con el fin de que el manual resulte más comprensible para los usuarios, todas las imágenes que aparecen en la pantalla del dispositivo están enumeradas consecutivamente por orden de aparición.

Consulte el capítulo 8, «Breve descripción de las imágenes mostradas en la pantalla».

5.2 Comprobación de la instalación

Antes de conectar el controlador a la corriente eléctrica, compruebe que los componentes del sistema se han instalado y conectado según los apartados 3.1 y 3.2

5.3 Configuración del controlador

Tras el arranque inicial, el controlador entra automáticamente en el modo de configuración. Si ya se ha seleccionado un refrigerante, cuando se arranque el dispositivo se activará el modo de regulación. En posteriores arranques, es posible activar el modo de configuración pulsando simultáneamente los botones +/- y manteniéndolos pulsados durante al menos cinco segundos. Si los ajustes del modo de configuración (CONF) se modifican durante el funcionamiento del controlador (no es aplicable a las unidades), la potencia del controlador Y1 pasará a 0 V. En este caso, el control se volverá a desbloquear sólo después de haberse activado todos los parámetros siguientes pulsando el botón <ESC> de la derecha (el controlador debe pasar al modo de regulación).

Nota

Modo de configuración/CONF

(Para continuar, pulse <OK> / imagen 3)

En este modo, puede introducir el tipo de refrigerante empleado en la instalación. Además, puede seleccionar las unidades de presión, temperatura y VIE. También le permite configurar los tipos de sensores, según el tipo concreto de aplicación.

¡La incorrecta selección del tipo de refrigerante puede dañar la instalación!

Existe la posibilidad de configurar el control de la capacidad de refrigeración (vea el capítulo 6). Por defecto, el controlador tiene desactivado el control de capacidad.

lma-	Función	Parámetro	Código	Intervalo de ajuste/	Configuración	Pro-
gen				incremento	por defecto	cedimiento
4	REFRIG	Tipo de refrigerante	REFRIG	R22, R23, R134a, R152a, R170, R290, R401a, R401b, R401c, R402a, R402b, R404a, R406a, R407a, R407b, R407c, R408a, R409a, R410a, R410b, R417a, R502, R507, R600, R600a, R717, R723, R744, R1270	N/A	Para ajustar, pulse +/- Para confirmar, pulse <ok> Para salir,</ok>
5		Activa/desactiva el compresor y la realimentación	COMP Fb ³⁾	ON (for C1) ON/OFF	ON OFF	pulse <esc></esc>
		de la VIE				
6	CAP	Aplicación	-	NO=recalentamiento simple (Aplicación 1) EXT.=Control de capacidad externo (Aplicación 2) INT. =Control de capacidad interno (Aplicación 3)	NO	
7	SENSOR	Sensor 1	X1	QBE9101-P10U con	-	
		Sensor 2	X2	Ni1000	Ni1000	
		Sensor 2	X3	010 V. 420 mA	010 V	
		Sensor 4 ⁵⁾	X4	Si se configura el control de capacidad interno: NO, 010 V, 420 mA Si se configura el control de capacidad externo: 010 V, 420 mA	-	
		Sensor 5 5)	X5	Ni1000	Ni1000	

8	RANGE	X4	LO	-9090 °C / 0,1 °C -130194 °F / 0,1 °F	-35,0 °C / -31,0 °F	
			HI	-9090 °C / 0,1 °C -130194 °F / 0,1 °F	+35,0 °C / +95,0 °F	
9	UNITS	Temperatura	Т	°C(K),°F	°C(K)	
		Presión	Р	Bares, Psi	Bares	
		Apertura de la VIE	EIV	V, %	%	

- ¹⁾ Los refrigerantes R290 y R1270 sólo se pueden emplear con válvulas a prueba de explosión. El refrigerante R717 se debe usar con válvulas que se puedan emplear con amoníaco.
- ²⁾ El Circuito 1 es el sistema de funcionamiento por defecto y el compresor del Circuito 1 no se puede desactivar.
- ³⁾ Si hay una diferencia de más del 10 % entre la apertura real de la VIE (X3) y la apertura calculada de la VIE (Y1), la pantalla que muestra la realimentación de la VIE parpadeará de forma continuada.
- ⁴⁾ Si el control de capacidad está configurado, aparecerá la indicación CAP en el modo de regulación.
- ⁵⁾ La selección de X4 y X5 varía en función de la aplicación configurada. Si el valor seleccionado para el sensor X4 es NO, se empleará el sensor X5.
- ⁶⁾ El límite del intervalo (RANGE) solo se puede configurar si se han seleccionado el control de capacidad interno (aplicación 3) y X4.

Modo de parametrización/ PARA

(Para continuar, pulse <OK> / imagen 10)

En este modo, puede seleccionar el valor de referencia para el recalentamiento, los parámetros para el control del recalentamiento y la función MOP, así como el control de capacidad (si se ha configurado previamente) y el control de seguridad (si está configurado). El control del recalentamiento se consigue mediante un controlador PID. Tanto la función MOP como el control de capacidad usan un algoritmo PI.

lma- gen	Función	Parámetro	Código	Intervalo de ajuste/incremento	Configuración por defecto	Procedimiento
11	ΔT	Valor de referencia	SP	016 K / 0,1 K 028.8 °F / 0,1 °F	6,0 K 10,8 °F	Para ajustar el parámetro o
		Banda-P	XP	2160 K / 1 K 3288 °F / 1 °F	10 K 18 °F	valor, pulse +/-
		Tiempo de acción integral	TN	0600 s / 1 s	30 s	Para confirmar, pulse <ok></ok>
		Parte-D	D	05 / 1	0	
12	CAP ¹⁾	Incremento máximo de ∆T SP	SMX Ejemplo en pág. 115	050 K / 0,1 K 090 °F / 0,1 °F	18,0 K 32,4 °F	Para salir, pulse <esc></esc>
		Dirección de la señal externa ²⁾	SD	-1 (0 V / 4 mA = capacidad de refrigeración máx.) 1 (0 V / 4 mA = capacidad de refrigeración mín.)	1	
		Valor de referencia	SP	-4590 °C / 0,1 °C -49194 °F / 0,1 °F	6,0 °C 42,8 °F	
		Banda-P	XP	2160 K / 1 K 3288 °F / 1 °F	35 K 63 °F	
		Tiempo de acción integral	TN	0600 s / 1 s	95 s	
13	MOP	Valor de referencia	SP	-4535 °C / 0,1 °C -4995 °F / 0,1 °F	15,0 °C 59,0 °F	
		Banda-P	XP	2160 K / 1 K 3288 °F / 1 °F	5 K 9 °F	
		Tiempo de acción integral	TN	0600 s / 1 s	30 s	
14	SAFETY 3)	Retardo del accionamiento de la válvula	VD	030 s / 1 s	0 s	
		Límite de aper- tura para el accionamiento de la válvula	VO	050 % / 1 %	0 %	
lma- gen	Función	Parámetro	Código	Intervalo de ajuste/incremento	Configuración por defecto	Procedimiento
-------------	---------	--	------------------	------------------------------------	--------------------------------	---------------
		Retardo de la alarma del sensor de presión cuando el compresor está encendido (ON)	PA	030 s / 1 s	5 s	
		Límite inferior para la medición de temperatura	TL ⁴⁾	-5040 °C / 1 °C -5840 °F / 1 °F	-40 °C / 1 °C -40 °F / 1 °F	
		Recalentamient o mínimo ΔT	MI	04 K / 07,2 °F	2 K / 3,6 °F	

- 1) Sólo se puede parametrizar si se ha seleccionado el control de capacidad externo o interno en el modo de configuración.
- 2) El parámetro SD sólo se puede ajustar si se ha seleccionado el control de capacidad externo en el modo de configuración. Si SD = -1,0 V / 4 mA corresponde a la capacidad de refrigeración máxima.

Si SD = 1.0 V / 4 mA corresponde a la capacidad de refrigeración mínima.

3) Control de la seguridad de funcionamiento

- 4) Cuando el valor de la temperatura se encuentre por encima del límite de TL. se activará una alarma.
- Observación La función MOP se puede configurar mediante el empleo de los parámetros. Por lo general, no conviene modificar la configuración por defecto de esta función.

5.4 Comprobación de los dispositivos periféricos

El funcionamiento de los dispositivos periféricos se puede comprobar según lo indicado a continuación:

Sensores de presión y de temperatura

Ambos sensores funcionan correctamente si, en el modo de regulación, los valores correspondientes a la temperatura de evaporación TO y a la temperatura del gas de aspiración TOH que se muestran en la pantalla son verosímiles (mediciones de referencia). Si está configurado el control de capacidad interno, también será necesario comprobar el funcionamiento del sensor de la temperatura del medio. En caso de avería, consulte el capítulo 7.

Válvula de inyección electrónica

En el modo de simulación, puede preconfigurar el grado de apertura (MAN EIV) de la válvula de inyección electrónica. En ese mismo modo de funcionamiento, puede comprobar si la posición real de la válvula (EIV) coincide con la posición seleccionada manualmente (MAN EIV).

Nota Se debe tener en cuenta que lo habitual es que exista una pequeña diferencia entre la señal de posicionamiento y la señal de realimentación de posición. Sin embargo, esta diferencia no debe variar significativamente con respecto a la totalidad del intervalo de posicionamiento.

Modo de simulación/SIMU

(Para continuar, pulse <OK> / imagen15)

lma- gen	Función	Parámetro	Código	Intervalo de ajuste	Configuración por defecto	Procedimiento
16	Grado de apertura manual de la VIE	Valor de referencia * Señal de 010 V CC	MAN EIV	010,0 V / 0,1 V	0,0 V	Para ajustar el parámetro / valor, pulse +/-
17	Realimentación de la posición real de la VIE al grado de apertura manual	Señal de 010 V CC Grado de apertura de 0100 %	MAN EIV EIV	-	-	Para confirmar, pulse <ok> Pulse <esc> para desplazarse</esc></ok>
18	Visualización del valor real	Temperatura de evaporación Temperatura del gas de aspiración	то тон		-	hasta el modo de regulación
	Para salir, pulse el botón <esc> durante varios segundos.</esc>					

*¡Advertencia de seguridad!

- En el modo de simulación, las funciones de control están desactivadas a menos que se activen por medio de D1. Por ello, la instalación podría sufrir daños importantes.
- En el modo de simulación, las funciones de control se pueden desactivar deliberadamente (a través de D1).
 Esto permite que la instalación se accione manualmente durante aproximadamente 15 minutos.

5.5 Manejo de la regulación

Durante la regulación, se activa el modo de regulación. En este modo de funcionamiento, es posible visualizar todas las entradas y salidas.

Modo de regulación

Imagen	Parámetro y código	Posición	Procedimientos
19	Valor real de recalentamiento	Fila 1	Pulse los
	Valor de referencia del	Fila 2	botones +/- para
	recalentamiento (∆T SP)		desplazarse
	Apertura real de la VIE (EIV)	Fila 3	hasta la pantalla
19a ¹⁾	Señal de realimentación de la VIE (Fb)	Fila 1	que desee.
	Apertura calculada de la VIE	Fila 2	
	Apertura real de la VIE (EIV)	Fila 3	
20	(en blanco)	Fila 1	
	Temperatura de evaporación (TO)	Fila 2	
	Presión de evaporación (PO)	Fila 3	
21	(en blanco)	Fila 1	
	Temperatura de evaporación (TO)	Fila 2	
	Temperatura del gas de aspiración (TOH)	Fila 3	
21a ²⁾	EXT (señal externa)	Fila 1	
	Señal externa real	Fila 2	
	(en blanco)	Fila 3	
21b ³⁾	Temperatura del medio real (TM)	Fila 1	
	Valor de referencia del medio (CAP SP)	Fila 2	
	(en blanco)		
22	Refrigerante seleccionado (R)	Fila 1	
	(en blanco)	Fila 2	
	(en blanco)	Fila 3	

¹⁾ Si la señal de realimentación (Fb) está desactivada, no se podrá visualizar la imagen 19a.

- ²⁾ La imagen 21a se mostrará si se configura el control de capacidad externo.
- ³⁾ La imagen 21b se mostrará si se configura el control de capacidad interno.

5.6 Ajuste del controlador de recalentamiento

Si el cableado del sistema es correcto y todos los periféricos están correctamente instalados, se puede encender la instalación. Los parámetros por defecto para el control del recalentamiento (XP, TN y D) se pueden optimizar según se indica a continuación.

- a) Tras encender la instalación, espere hasta que se haya alcanzado el estado estacionario, lo cual puede requerir entre dos y cinco minutos. El gráfico que aparece más arriba muestra la posible evolución del recalentamiento durante el estado transitorio que sigue a la puesta en marcha de la instalación.
- b) Determine la desviación máxima (MA) con respecto al valor de referencia ∆T SP.
- Aumente la XP (por ejemplo, al doble) o reduzca la XP (por ejemplo, a la mitad).
- d) Tras modificar la XP, espere durante al menos dos ciclos y, a continuación, vuelva a determinar la desviación. El cambio en la MA determina los posteriores ajustes. Consulte la tabla que aparece más abajo.
- e) Tras determinar el valor óptimo de la XP, es probable que no sea necesario realizar más cambios.
- Repita los pasos c) e) con el parámetro TN en lugar de XP.
- g) Repita los pasos c) e) con el parámetro D en lugar de XP.

	La MA disminuye	La MA aumenta
Se ha	Vuelva a aumentar la XP y continúe con el	Restaure la XP a su valor
aumentado	paso d) hasta que la MA comience a	inicial y, a continuación,
la XP	aumentar. A continuación, restaure la XP al	reduzca el valor de la misma.
	valor en el que la MA presentaba el valor más	Continúe con el paso d).
	pequeño (valor óptimo).	
Se ha	Vuelva a aumentar la XP y continúe con el	Restaure la XP a su valor
reducido la	paso d) hasta que la MA comience a	inicial y, a continuación,
XP	aumentar. A continuación, restaure la XP al	aumente el valor de la misma.
	valor en el que la MA presentaba el valor más	Continúe con el paso d).
	pequeño (valor óptimo).	

6 Control de la capacidad de refrigeración

6.1 Información general

La capacidad de enfriamiento de la unidad de refrigeración disminuye a medida que aumenta el recalentamiento del gas de aspiración. PolyCool Superheat emplea este principio para controlar la capacidad de refrigeración.

6.2 Principio de funcionamiento

El controlador de capacidad varía continuamente con el valor de referencia del recalentamiento dentro de un determinado intervalo. La asignación se produce de forma proporcional a una señal de 0...10 V CC o a la variable manipulada del controlador de capacidad. La señal 0 V / 4 mA CC corresponde al valor de referencia del recalentamiento (Δ T SP) y la señal 10 V / 20 mA CC corresponde a la suma de (Δ T SP+SMX). Ambos parámetros se pueden introducir en el modo de parametrización. Cuanto mayor sea el valor de SMX, mayor será la reducción posible de la capacidad de refrigeración. Sin embargo, a medida que disminuye la capacidad, disminuye también la presión de evaporación y, con ello, la temperatura de evaporación. El descenso medio por cada K de recalentamiento adicional se muestra a continuación:

SMX	 La temperatura de evaporación disminuye 1 °C La capacidad de refrigeración Q₀ disminuye en un 3,1 % 	
Ejemplo	Se necesita reducir la capacidad de refrigera 50 %, es decir, 50 % / 3,1 ≅ 16 K de SMX	ción en un
	Para garantizar la correcta lubricación y enfri compresor en todo momento, el recalentamie puede incrementar por encima de ciertos lím conocer la mínima presión de aspiración per la ficha técnica del compresor. Si la capacidad de refrigeración se reduce er puede producir una excesiva formación de hi evaporador (enfriadores de aire). El descens temperatura del evaporador también se debe cuenta en el caso de refrigeradores sin prote escarcha.	amiento del ento no se ites. Para mitida, consulte n exceso, se ielo en el o de la e tener en ección anti-

6.3 Aplicación

PolyCool[™] Superheat es compatible con cuatro tipos distintos de aplicación (modos de configuración). La Aplicación 1 representa el control de recalentamiento normal (por defecto) y es la descrita en el capítulo anterior. Las tres aplicaciones restantes se describen a continuación.

6.3.1 Control de capacidad externo (EXT.)

La entrada X4 se puede utilizar para cambiar directamente el valor de referencia del recalentamiento, dentro de los límites determinados en el modo de parametrización (SMX), mediante la aplicación de una señal 0...10 V / 4...20 mA CC basada en la configuración de la dirección de la señal externa (SD). Esta señal procede, generalmente, de un controlador externo (Synco, Saphir o de otro proveedor) cuya función es mantener la temperatura del medio a un nivel constante. El controlador mide la temperatura del medio, calcula la variable manipulada y la convierte en una señal de 0...10 V / 4...20 mA CC.

Modo de funcionamiento

10 V / 20 mA ≅ Q₀ mín 0 V / 4 mA ≅ Q₀ máx. (100 %) Si SD=1 (véase la página 108, imagen 12)

6.3.2 Control de capacidad interno (INT.)

La entrada X4 se puede emplear para obtener directamente la temperatura del medio TM mediante un sensor de temperatura activo X4, con una potencia de 0...10 V / 4...20 mA CC o un sensor de temperatura X4 pasivo (Ni1000). En el modo de configuración, la entrada se puede configurar según se requiera (imágenes 6 y 7). El valor real de la temperatura del medio se compara con el valor de referencia (CAP SP) y el controlador de la temperatura del medio (el controlador de capacidad) ajusta el valor de referencia del recalentamiento según proceda. El valor de referencia de la temperatura del medio y los parámetros de control se pueden introducir en el modo de parametrización.

6.4 Puesta en servicio y optimización del controlador de capacidad

La puesta en servicio del controlador se ha de realizar según lo descrito en el capítulo 5. A ser posible, la puesta en servicio se debe efectuar usando sólo el control de recalentamiento normal.

Tras la optimización de los parámetros de control según lo descrito en el apartado 5.5, el control de capacidad se debe configurar y parametrizar. En principio, los parámetros del controlador de capacidad (XP, TN) se han de optimizar según lo descrito en el apartado 5.5. Siempre se han de seleccionar de forma que sean considerablemente mayores que los parámetros del controlador de recalentamiento.

Corrección de errores 7

Cuando se detecta una señal de error, el icono de alarma 🕮 parpadea y la pantalla muestra el mensaje ERR (o FAIL) junto con el parámetro correspondiente.

Componente	Error	Causa posible / solución
Sensor de temperatura pasivo Ni1000	El valor medido parpadea. Mensaje: FAIL	El cable del sensor tiene un circuito abierto / no está conectado o tiene un cortocircuito.
	El valor medido parpadea. Mensaje: ERR / LO	El valor medido es \leq TL
	El valor medido parpadea. Mensaje: ERR / HI	El valor medido es \ge 80 °C
Sensor de temperatura activo con señal 010 V / 420 mA CC u otros transmisores de	El valor medido parpadea. Mensaje: ERR / LO	El valor medido es \leq -0,5 V ó 3,5 mA (en el control de capacidad externo) El valor medido es \leq 0 V ó 4 mA (en el control de capacidad interno con sensor de temperatura activo)
senal 010 V / 420 mA CC (Synco, Saphir y controladores de otros proveedores)	El valor medido parpadea. Mensaje: ERR / HI	El valor medido es $\ge 10,5$ V ó 20,5 mA (en el control de capacidad externo) El valor medido es ≥ 10 V ó 20 mA (en el control de capacidad interno con sensor de temperatura activo)
Sensor de presión	El valor medido parpadea. Mensaje: ERR / LO	El valor medido es \leq 4 mA
	El valor medido parpadea. Mensaje: ERR / HI	El valor medido es \ge 20 mA
Válvula de inyección electrónica (VIE)	No hay señal de realimentación de posición = 0 V	El cable de conexión de la señal de realimentación tiene un circuito abierto / no está conectado
	La válvula no se abre	El cable de conexión no está conectado.
		En el modo de simulación, el funcionamiento de la válvula se puede comprobar introduciendo manualmente el grado de apertura de la válvula y comparándolo con la señal de realimentación de posición.
		Válvula defectuosa
	La señal de realimentación de posición no coincide con el grado de apertura introducido manualmente.	El cable de la señal de realimentación no está conectado (para los bornes de conexión, consulte la ficha de datos técnicos). Circuito abierto o válvula defectuosa.
	Formación de hielo en el evaporador cuando la válvula está cerrada.	Válvula defectuosa La calibración electrónica de la válvula no es correcta. La válvula no se cierra por completo. Es posible que el interior de la válvula esté sucio.

Controlador	No se visualiza nada en la pantalla.	Comprobar alimentación eléctrica (24 V CA / CC)
	La variable manipulada es siempre 0 V (Y1)	Cortocircuito / sensor con circuito abierto No hay activación a través de D1 * Controlador defectuoso
	Formación de hielo en el evaporador sin activación a través de D1	La potencia del controlador Y1 no es 0 $V \Rightarrow$ Controlador defectuoso Tensión de ruido externa en la línea de señales de la VIE

* Cuando aparezcan errores relativos a la señal de activación D1, parpadeará simultáneamente el icono del compresor ④.

Breve descripción de las 8 imágenes mostradas en la pantalla

En lo que respecta a los valores de las variables de ajuste y sus incrementos, consulte capítulo 5.

lma- gen	Informac	ión visualizada	Procedimiento	
1	Comprob pantalla d	ación de los segmentos de la Jurante aprox. 5 s		
2	Selecciór	n del circuito	Pulse simultáneamente los botones +/- durante al menos 5 segundos. Seleccione mediante los botones +/- y pulse <ok> para confirmar.</ok>	
	Tras sele	ccionar el circuito, seleccione el mo	odo mediante los botones +/- y pulse <ok></ok>	
	para cont	firmar.		
3	CONF M	ODE (Modo de configuración)	Pulse <ok> para confirmar y continuar.</ok>	
4	REFRIG	(Selección del refrigerante)		
5	ENABLE	(Activación/desactivación del		
		compresor y la señal de	En la imagen 3, seleccione mediante los	
		realimentación de la VIE)	botones +/-	
6	CAP		Para continuar/ confirmar, pulse <ok></ok>	
7	SENSOR	2	Para salir, pulse <esc></esc>	
8	RANGE	(Intervalo de medición de X4)		
9	UNITS			
	Pulse el l	ootón <esc> continuadamente para</esc>	a volver a la imagen 3.	
10	PARA M	ODE (Modo de parametrización)	Pulse <ok> para confirmar y continuar.</ok>	
11	ΔΤ		Pulse <ok> para confirmar y continuar.</ok>	
	ΔT SP	(Valor de referencia del		
		recalentamiento)		
		(por defecto: 6,0 K / 10,8 °F)		
	ΔΤ ΧΡ	(Recalentamiento banda-P)	En la imagen 11, seleccione mediante los	
		(por defecto: 10 K / 18 °F)	botones +/-	
	ΔΤ ΤΝ	(Recalentamiento tiempo de	Para continuar/ confirmar, pulse <ok></ok>	
		acción integral)	Para salir, pulse <esc></esc>	
		(por defecto: 30 s)		
	ΔT D	(Parte D del recalentamiento)		
		(por defecto: 0)		
	Pulse el botón <esc> continuadamente para volver a la imagen 10.</esc>			

121/124

CPS40

lma- gen	Info	rmación visualizada	Procedimiento
12	CAP		Pulse <ok> para confirmar y continuar.</ok>
	CAP	 SMX (Incremento máximo del valor de referencia) (por defecto: 18,0 K / 32,4 °F) 	
	CAP	SD (dirección de señal externa) (SD=1 indica que 0 V / 4 mA	
		corresponde a la capacidad de refrigeración mínima)	En la imagen 12, seleccione mediante los botones +/-
	CAP	 SP (valor de referencia del control de capacidad) (por defecto 6,0 °C / 42,8 °F) 	Para continuar/ confirmar, pulse <ok> Para salir, pulse <esc></esc></ok>
	CAP	2 XP (Banda-P) (por defecto: 35 K / 63 °F)	
	CAP	(por defecto: 5 s)	
	Puls	e el botón <esc> continuadamente para</esc>	a volver a la imagen 12.
13	MOF	2	Pulse <ok> para confirmar y continuar.</ok>
	MOF	P SP (Valor de referencia de MOP) (por defecto: 15 °C / 59 °F)	En la imagen 13 seleccione mediante los
	MOF	P XP (Banda-P de MOP) (por defecto: 5 K / 9 °F)	botones +/-
	MOF	P TN (Tiempo de acción integral de MOP)	Para salir, pulse <esc></esc>
	Dulo	o ol botán <esc> continuadamento par</esc>	a volvor a la imagon 13
14	SAF	ETV (Control de seguridad)	Pulse $< OK >$ para confirmar y continuar
	VD	(Retardo del accionamiento de la válvula) (por defecto: 0)	En la imagen 15 seleccione mediante los botones +/- Para continuar/ confirmar, pulse <ok></ok>
	VO	(Límite de apertura para el accionamiento de la válvula) (por defecto: 0)	Para salir, pulse <esc></esc>
	PA	(Retardo de la alarma del sensor de presión cuando el compresor está encendido - ON) (por defecto: 5 s)	
	TL	(Límite inferior para la medición de temperatura) (por defecto: -40 °C / -40 °F)	

lma- gen	Informac	ión visualizada	Procedimiento	
	MI (Red	calentamiento mínimo ΔT)		
	(por	defecto: 2 K / 3,6 °F)		
	Pulse el b	otón <esc> continuadamente para</esc>	a volver a la imagen 14.	
15	SIMU MO	DE (Modo de simulación)	Pulse <ok> para confirmar y continuar.</ok>	
16	MAN EIV	(Apertura manual de la válvula		
		mediante señal interna 010 V		
		CC)	En la imagen 15, pulse <ok></ok>	
	¡Adverte	ncia de seguridad!	Para salir, pulse <esc></esc>	
	Puede pr	oducir daños graves en el		
	compres	or.		
17	EIV	(Realimentación de la posición		
		real de la VIE a la apertura	En la imagen 16, vuelva a pulsar <ok></ok>	
		manual MAN EIV)		
18	то	(Valor real de la temperatura de		
		evaporación)	En la imagen 17, seleccione con los	
	тон	(Valor real de la temperatura del	botones +/-	
		gas de aspiración)		
	Pulse el botón <esc> continuadamente para volver a la imagen 15.</esc>			

Siemens Schweiz AG Building Technologies Group International Headquarters HVAC Products Gubelstrasse 22 CH-6301 Zug Tel. +41 41-724 24 24 Fax +41 41-724 35 22 www.siemens.com/buildingtechnologies

124/124

Building Technologies HVAC Products © 2006 Siemens Schweiz AG Änderungen vorbehalten